BOS: Model-based clustering of multivariate ordinal data relying on a stochastic binary search algorithm

We design the first univariate probability distribution for ordinal data which strictly respects the ordinal nature of data. More precisely, it relies only on order comparisons between modalities. Contrariwise, most competitors either forget the order information or add a nonexistent distance information. The proposed distribution is obtained by modeling the data generating process which is assumed, from optimality arguments, to be a stochastic binary search algorithm in a sorted table. The resulting distribution is natively governed by two meaningful parameters (position and precision) and has very appealing properties: decrease around the mode, shape tuning from uniformity to a Dirac, identifiability. Moreover, it is easily estimated by an EM algorithm since the path in the stochastic binary search algorithm is missing. Using then the classical latent class assumption, the previous univariate ordinal model is straightforwardly extended to model-based clustering for multivariate ordinal data.

Package details

AuthorChristophe Biernacki and Julien Jacques
MaintainerJulien Jacques <[email protected]>
LicenseGPL (>=2)
Package repositoryView on R-Forge
Installation Install the latest version of this package by entering the following in R:
install.packages("BOS", repos="")

Try the BOS package in your browser

Any scripts or data that you put into this service are public.

BOS documentation built on May 31, 2017, 4:01 a.m.