CENTIPEDE: CENTIPEDE learns a DNaseI footprint of a transcription factor and predicts its binding sites

Centipede fits a bayesian hierarchical mixture model to learn TF-specific distribution of experimental data on a particular cell-type for a set of candidate binding sites described by a motif. More documentation is under preparation and will be make available soon at http://centipede.uchicago.edu

AuthorJacob F Degner, Roger Pique-Regi
Date of publicationNone
MaintainerRoger Pique-Regi <rpique@uchicago.edu>
LicenseGPL
Version1.2

View on R-Forge

Files in this package

CENTIPEDE
CENTIPEDE/NAMESPACE
CENTIPEDE/data
CENTIPEDE/data/NRSF_Anno.rda
CENTIPEDE/data/NRSFcuts.rda
CENTIPEDE/R
CENTIPEDE/R/plotProfiles.R CENTIPEDE/R/fitCentipede.R CENTIPEDE/R/imageCutSites.R
CENTIPEDE/DESCRIPTION
CENTIPEDE/man
CENTIPEDE/man/CENTIPEDE-package.Rd CENTIPEDE/man/plotProfile.Rd CENTIPEDE/man/fitCentipede.Rd CENTIPEDE/man/imageCutSites.Rd

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

All documentation is copyright its authors; we didn't write any of that.