information.gain: Entropy-based filters

Description Usage Arguments Details Value Author(s) Examples

Description

The algorithms find weights of discrete attributes basing on their correlation with continous class attribute.

Usage

1
2
3

Arguments

formula

a symbolic description of a model

data

data to process

Details

information.gain is

H(Class) + H(Attribute) - H(Class, Attribute)

.

gain.ratio is

(H(Class) + H(Attribute) - H(Class, Attribute)) / H(Attribute)

symmetrical.uncertainty is

2 * (H(Class) + H(Attribute) - H(Class, Attribute)) / (H(Attribute) + H(Class))

Value

a data.frame containing the worth of attributes in the first column and their names as row names

Author(s)

Piotr Romanski

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

FSelector documentation built on May 2, 2019, 4:52 p.m.