Description Usage Arguments Details Value Author(s) Examples
The algorithms find weights of discrete attributes basing on their correlation with continous class attribute.
1 2 3 |
formula |
a symbolic description of a model |
data |
data to process |
information.gain
is
H(Class) + H(Attribute) - H(Class, Attribute)
.
gain.ratio
is
(H(Class) + H(Attribute) - H(Class, Attribute)) / H(Attribute)
symmetrical.uncertainty
is
2 * (H(Class) + H(Attribute) - H(Class, Attribute)) / (H(Attribute) + H(Class))
a data.frame containing the worth of attributes in the first column and their names as row names
Piotr Romanski
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | data(iris)
weights <- information.gain(Species~., iris)
print(weights)
subset <- cutoff.k(weights, 2)
f <- as.simple.formula(subset, "Species")
print(f)
weights <- gain.ratio(Species~., iris)
print(weights)
subset <- cutoff.k(weights, 2)
f <- as.simple.formula(subset, "Species")
print(f)
weights <- symmetrical.uncertainty(Species~., iris)
print(weights)
subset <- cutoff.biggest.diff(weights)
f <- as.simple.formula(subset, "Species")
print(f)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.