| getInfRobIC | R Documentation | 
Generic function for the computation of optimally robust ICs in case of infinitesimal robust models. This function is rarely called directly.
getInfRobIC(L2deriv, risk, neighbor, ...)
## S4 method for signature 'UnivariateDistribution,asCov,ContNeighborhood'
getInfRobIC(L2deriv, risk, neighbor, Finfo, trafo)
## S4 method for signature 'UnivariateDistribution,asCov,TotalVarNeighborhood'
getInfRobIC(L2deriv, risk, neighbor, Finfo, trafo)
## S4 method for signature 'RealRandVariable,asCov,ContNeighborhood'
getInfRobIC(L2deriv, risk, neighbor, Distr, Finfo, trafo)
## S4 method for signature 'UnivariateDistribution,asBias,ContNeighborhood'
getInfRobIC(L2deriv, risk, neighbor, symm, Finfo, trafo, 
             upper, maxiter, tol, warn)
## S4 method for signature 'UnivariateDistribution,asBias,TotalVarNeighborhood'
getInfRobIC(L2deriv, risk, neighbor, symm, Finfo, trafo, 
             upper, maxiter, tol, warn)
## S4 method for signature 'RealRandVariable,asBias,ContNeighborhood'
getInfRobIC(L2deriv, risk, neighbor, Distr, DistrSymm, L2derivSymm, 
             L2derivDistrSymm, Finfo, z.start, A.start, trafo, upper, maxiter, tol, warn)
## S4 method for signature 'UnivariateDistribution,asHampel,UncondNeighborhood'
getInfRobIC(L2deriv, risk, neighbor, symm, Finfo, trafo, 
             upper, maxiter, tol, warn)
## S4 method for signature 'RealRandVariable,asHampel,ContNeighborhood'
getInfRobIC(L2deriv, risk, neighbor, Distr, DistrSymm, L2derivSymm, 
             L2derivDistrSymm, Finfo, trafo, z.start, A.start, upper, maxiter, tol, warn)
## S4 method for signature 'UnivariateDistribution,asGRisk,UncondNeighborhood'
getInfRobIC(L2deriv, risk, neighbor, symm, Finfo, trafo, 
             upper, maxiter, tol, warn)
## S4 method for signature 'RealRandVariable,asGRisk,ContNeighborhood'
getInfRobIC(L2deriv, risk, neighbor, Distr, DistrSymm, L2derivSymm, 
             L2derivDistrSymm, Finfo, trafo, z.start, A.start, upper, maxiter, tol, warn)
## S4 method for signature 
## 'UnivariateDistribution,asUnOvShoot,UncondNeighborhood'
getInfRobIC(L2deriv, risk, neighbor, symm, Finfo, trafo, 
             upper, maxiter, tol, warn)
| L2deriv | L2-derivative of some L2-differentiable family of probability measures. | 
| risk |  object of class  | 
| neighbor |  object of class  | 
| ... | additional parameters. | 
| Distr |  object of class  | 
| symm |  logical: indicating symmetry of  | 
| DistrSymm |  object of class  | 
| L2derivSymm |  object of class  | 
| L2derivDistrSymm |  object of class  | 
| Finfo | Fisher information matrix. | 
| z.start | initial value for the centering constant. | 
| A.start | initial value for the standardizing matrix. | 
| trafo | matrix: transformation of the parameter. | 
| upper | upper bound for the optimal clipping bound. | 
| maxiter | the maximum number of iterations. | 
| tol | the desired accuracy (convergence tolerance). | 
| warn | logical: print warnings. | 
The optimally robust IC is computed.
computes the classical optimal influence curve for L2 differentiable parametric families with unknown one-dimensional parameter.
computes the classical optimal influence curve for L2 differentiable parametric families with unknown one-dimensional parameter.
computes the classical optimal influence curve for L2 differentiable 
parametric families with unknown k-dimensional parameter 
(k > 1) where the underlying distribution is univariate. 
computes the bias optimal influence curve for L2 differentiable parametric families with unknown one-dimensional parameter.
computes the bias optimal influence curve for L2 differentiable parametric families with unknown one-dimensional parameter.
computes the bias optimal influence curve for L2 differentiable 
parametric families with unknown k-dimensional parameter 
(k > 1) where the underlying distribution is univariate. 
computes the optimally robust influence curve for L2 differentiable parametric families with unknown one-dimensional parameter.
computes the optimally robust influence curve for L2 differentiable 
parametric families with unknown k-dimensional parameter 
(k > 1) where the underlying distribution is univariate. 
computes the optimally robust influence curve for L2 differentiable parametric families with unknown one-dimensional parameter.
computes the optimally robust influence curve for L2 differentiable 
parametric families with unknown k-dimensional parameter 
(k > 1) where the underlying distribution is univariate. 
computes the optimally robust influence curve for one-dimensional L2 differentiable parametric families and asymptotic under-/overshoot risk.
Matthias Kohl Matthias.Kohl@stamats.de
Rieder, H. (1980) Estimates derived from robust tests. Ann. Stats. 8: 106–115.
Rieder, H. (1994) Robust Asymptotic Statistics. New York: Springer.
Kohl, M. (2005) Numerical Contributions to the Asymptotic Theory of Robustness. Bayreuth: Dissertation.
InfRobModel-class
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.