EuclRandMatrix-class: Euclidean random matrix

Description Objects from the Class Slots Extends Methods Author(s) See Also Examples

Description

Class of Euclidean random matrices.

Objects from the Class

Objects can be created by calls of the form new("EuclRandMatrix", ...). More frequently they are created via the generating function EuclRandMatrix.

Slots

Dim

vector of positive integers: Dimensions of the random matrix.

Map

Object of class "list": list of functions.

Domain

Object of class "OptionalrSpace" domain of the random matrix.

Range

Object of class "OptionalrSpace" range of the random matrix.

Extends

Class "EuclRandVariable", directly.
Class "RandVariable", by class "EuclRandVariable".

Methods

coerce

signature(from = "EuclRandMatrix", to = "EuclRandVarList"): create a "EuclRandVarList" object from a Euclidean random matrix.

[

signature(x = "EuclRandMatrix"): generates a new Euclidean random variable/matrix by extracting elements of the slot Map of x.

Dim

signature(object = "EuclRandMatrix"): accessor function for slot Dim.

Dim<-

signature(object = "EuclRandMatrix", ): replacement function for slot Dim.

ncol

signature(x = "EuclRandMatrix"): number of columns of x.

nrow

signature(x = "EuclRandMatrix"): number of rows of x.

dimension

signature(object = "EuclRandMatrix"): dimension of the Euclidean random variable.

evalRandVar

signature(RandVar = "EuclRandMatrix", x = "numeric"): evaluate the slot Map of RandVar at x.

evalRandVar

signature(RandVar = "EuclRandMatrix", x = "matrix"): evaluate the slot Map of RandVar at x.

evalRandVar

signature(RandVar = "EuclRandMatrix", x = "numeric", distr = "Distribution"): evaluate the slot Map of RandVar at x assuming a probability space with distribution distr. In case x does not lie in the support of distr NA is returned.

evalRandVar

signature(RandVar = "EuclRandMatrix", x = "matrix", distr = "Distribution"): evaluate the slot Map of RandVar at rows of x assuming a probability space with distribution distr. For those rows of x which do not lie in the support of distr NA is returned.

t

signature(x = "EuclRandMatrix"): transposes x. In addition, the results of the functions in the slot Map of x are transposed.

show

signature(object = "EuclRandMatrix")

%*%

signature(x = "matrix", y = "EuclRandMatrix"): matrix multiplication of x and y. Generates an object of class "EuclRandMatrix".

%*%

signature(x = "numeric", y = "EuclRandMatrix"): matrix multiplication of x and y. Generates an object of class "EuclRandMatrix".

%*%

signature(x = "EuclRandVariable", y = "EuclRandMatrix"): matrix multiplication of x and y. Generates an object of class "EuclRandMatrix".

%*%

signature(x = "EuclRandMatrix", y = "matrix"): matrix multiplication of x and y. Generates an object of class "EuclRandMatrix".

%*%

signature(x = "EuclRandMatrix", y = "numeric"): matrix multiplication of x and y. Generates an object of class "EuclRandMatrix".

%*%

signature(x = "EuclRandMatrix", y = "EuclRandMatrix"): matrix multiplication of x and y. Generates an object of class "EuclRandMatrix".

%*%

signature(x = "EuclRandMatrix", y = "EuclRandVariable"): matrix multiplication of x and y. Generates an object of class "EuclRandMatrix".

Arith

signature(e1 = "numeric", e2 = "EuclRandMatrix"): Given a numeric vector e1, a Euclidean random matrix e2 and an arithmetic operator op, the Euclidean random matrix e1 op e2 is returned.

Arith

signature(e1 = "EuclRandMatrix", e2 = "numeric"): Given a Euclidean random matrix e1, a numeric vector e2, and an arithmetic operator op, the Euclidean random matrix e1 op e2 is returned.

Arith

signature(e1 = "EuclRandMatrix", e2 = "EuclRandMatrix"): Given two Euclidean random matrices e1 and e2, and an arithmetic operator op, the Euclidean random matrix e1 op e2 is returned.

Math

signature(x = "EuclRandMatrix"): Given a "Math" group generic fct, the Euclidean random matrix fct(x) is returned.

E

signature(object = "UnivariateDistribution", fun = "EuclRandMatrix", cond = "missing"): expectation of fun under univariate distributions.

E

signature(object = "AbscontDistribution", fun = "EuclRandMatrix", cond = "missing"): expectation of fun under absolutely continuous univariate distributions.

E

signature(object = "DiscreteDistribution", fun = "EuclRandMatrix", cond = "missing"): expectation of fun under discrete univariate distributions.

E

signature(object = "MultivariateDistribution", fun = "EuclRandMatrix", cond = "missing"): expectation of fun under multivariate distributions.

E

signature(object = "DiscreteMVDistribution", fun = "EuclRandMatrix", cond = "missing"): expectation of fun under discrete multivariate distributions.

E

signature(object = "UnivariateCondDistribution", fun = "EuclRandMatrix", cond = "numeric"): conditional expectation of fun under conditional univariate distributions.

E

signature(object = "AbscontCondDistribution", fun = "EuclRandMatrix", cond = "numeric"): conditional expectation of fun under absolutely continuous conditional univariate distributions.

E

signature(object = "DiscreteCondDistribution", fun = "EuclRandMatrix", cond = "numeric"): conditional expectation of fun under discrete conditional univariate distributions.

Author(s)

Matthias Kohl [email protected]

See Also

EuclRandMatrix, RandVariable-class, EuclRandVariable-class, EuclRandVarList-class, Distribution-class, Arith, Math, E

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
L1 <- list(function(x){x}, function(x){x^2}, function(x){x^3}, function(x){x^4}, 
           function(x){x^5}, function(x){x^6})
L2 <- list(function(x){exp(x)}, function(x){abs(x)}, 
           function(x){sin(x)}, function(x){floor(x)})

R1 <- new("EuclRandMatrix", Map = L1, Dim = as.integer(c(3,2)), 
                            Domain = Reals(), Range = Reals())
dimension(R1)
R1[1:2, 2]
R1[1:2, 1:2]
Map(R1[1,2])
Map(t(R1)[2,1])

R2 <- EuclRandMatrix(Map = L2, ncol = 2, Domain = Reals(), dimension = 1)
dimension(R2)
(DL <- imageDistr(R2, Norm()))
plot(DL)

Map(gamma(R2)) # "Math" group

## "Arith" group
Map(2/R1)
Map(R2 * R2)

RandVar documentation built on May 2, 2019, 5:20 p.m.