Description Usage Arguments Value Author(s) References Examples
This function computes the smallest positive constant that makes Euclidean a distance matrix and applies it.
1 |
distmat |
an object of class |
print |
if TRUE, prints the eigenvalues of the matrix |
tol |
a tolerance threshold for zero |
cor.zero |
if TRUE, zero distances are not modified |
an object of class dist
containing a Euclidean distance matrix.
Daniel Chessel
Stéphane Dray stephane.dray@univ-lyon1.fr
Cailliez, F. (1983) The analytical solution of the additive constant problem. Psychometrika, 48, 305–310.
Legendre, P. and Anderson, M.J. (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecological Monographs, 69, 1–24.
Legendre, P., and Legendre, L. (1998) Numerical ecology, 2nd English edition edition. Elsevier Science BV, Amsterdam.
From the DistPCoa program of P. Legendre et M.J. Anderson
http://www.fas.umontreal.ca/BIOL/Casgrain/en/labo/distpcoa.html
1 2 3 4 5 6 7 8 9 10 11 | data(capitales)
d0 <- capitales$dist
is.euclid(d0) # FALSE
d1 <- cailliez(d0, TRUE)
# Cailliez constant = 2429.87867
is.euclid(d1) # TRUE
plot(d0, d1)
abline(lm(unclass(d1)~unclass(d0)))
print(coefficients(lm(unclass(d1)~unclass(d0))), dig = 8) # d1 = d + Cte
is.euclid(d0 + 2428) # FALSE
is.euclid(d0 + 2430) # TRUE the smallest constant
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.