sim: Functions to Get Posterior Distributions

simR Documentation

Functions to Get Posterior Distributions

Description

This generic function gets posterior simulations of sigma and beta from a lm object, or simulations of beta from a glm object, or simulations of beta from a merMod object

Usage

sim(object, ...)

## S4 method for signature 'lm'
sim(object, n.sims = 100)
## S4 method for signature 'glm'
sim(object, n.sims = 100)
## S4 method for signature 'polr'
sim(object, n.sims = 100)
## S4 method for signature 'merMod'
sim(object, n.sims = 100)

## S3 method for class 'sim'
coef(object,...)
## S3 method for class 'sim.polr'
coef(object, slot=c("ALL", "coef", "zeta"),...)
## S3 method for class 'sim.merMod'
coef(object,...)
## S3 method for class 'sim.merMod'
fixef(object,...)
## S3 method for class 'sim.merMod'
ranef(object,...)
## S3 method for class 'sim.merMod'
fitted(object, regression,...)


Arguments

object

the output of a call to lm with n data points and k predictors.

slot

return which slot of sim.polr, available options are coef, zeta, ALL.

...

further arguments passed to or from other methods.

n.sims

number of independent simulation draws to create.

regression

the orginial mer model

Value

coef

matrix (dimensions n.sims x k) of n.sims random draws of coefficients.

zeta

matrix (dimensions n.sims x k) of n.sims random draws of zetas (cut points in polr).

fixef

matrix (dimensions n.sims x k) of n.sims random draws of coefficients of the fixed effects for the merMod objects. Previously, it is called unmodeled.

sigma

vector of n.sims random draws of sigma (for glm's, this just returns a vector of 1's or else of the square root of the overdispersion parameter if that is in the model)

Author(s)

Andrew Gelman gelman@stat.columbia.edu; Yu-Sung Su suyusung@tsinghua.edu.cn; Vincent Dorie vjd4@nyu.edu

References

Andrew Gelman and Jennifer Hill. (2006). Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press.

See Also

display, lm, glm, lmer

Examples

#Examples of "sim"
 set.seed (1)
 J <- 15
 n <- J*(J+1)/2
 group <- rep (1:J, 1:J)
 mu.a <- 5
 sigma.a <- 2
 a <- rnorm (J, mu.a, sigma.a)
 b <- -3
 x <- rnorm (n, 2, 1)
 sigma.y <- 6
 y <- rnorm (n, a[group] + b*x, sigma.y)
 u <- runif (J, 0, 3)
 y123.dat <- cbind (y, x, group)
# Linear regression
 x1 <- y123.dat[,2]
 y1 <- y123.dat[,1]
 M1 <- lm (y1 ~ x1)
 display(M1)
 M1.sim <- sim(M1)
 coef.M1.sim <- coef(M1.sim)
 sigma.M1.sim <- sigma.hat(M1.sim)
 ## to get the uncertainty for the simulated estimates
 apply(coef(M1.sim), 2, quantile)
 quantile(sigma.hat(M1.sim))

# Logistic regression
 u.data <- cbind (1:J, u)
 dimnames(u.data)[[2]] <- c("group", "u")
 u.dat <- as.data.frame (u.data)
 y <- rbinom (n, 1, invlogit (a[group] + b*x))
 M2 <- glm (y ~ x, family=binomial(link="logit"))
 display(M2)
 M2.sim <- sim (M2)
 coef.M2.sim <- coef(M2.sim)
 sigma.M2.sim <- sigma.hat(M2.sim)

# Ordered Logistic regression
house.plr <- polr(Sat ~ Infl + Type + Cont, weights = Freq, data = housing)
display(house.plr)
M.plr <- sim(house.plr)
coef.sim <- coef(M.plr, slot="coef")
zeta.sim <- coef(M.plr, slot="zeta")
coefall.sim <- coef(M.plr)

# Using lmer:
# Example 1
 E1 <- lmer (y ~ x + (1 | group))
 display(E1)
 E1.sim <- sim (E1)
 coef.E1.sim <- coef(E1.sim)
 fixef.E1.sim <- fixef(E1.sim)
 ranef.E1.sim <- ranef(E1.sim)
 sigma.E1.sim <- sigma.hat(E1.sim)
 yhat <- fitted(E1.sim, E1)

# Example 2
 u.full <- u[group]
 E2 <- lmer (y ~ x + u.full + (1 | group))
 display(E2)
 E2.sim <- sim (E2)
 coef.E2.sim <- coef(E2.sim)
 fixef.E2.sim <- fixef(E2.sim)
 ranef.E2.sim <- ranef(E2.sim)
 sigma.E2.sim <- sigma.hat(E2.sim)
 yhat <- fitted(E2.sim, E2)

# Example 3
 y <- rbinom (n, 1, invlogit (a[group] + b*x))
 E3 <- glmer (y ~ x + (1 | group), family=binomial(link="logit"))
 display(E3)
 E3.sim <- sim (E3)
 coef.E3.sim <- coef(E3.sim)
 fixef.E3.sim <- fixef(E3.sim)
 ranef.E3.sim <- ranef(E3.sim)
 sigma.E3.sim <- sigma.hat(E3.sim)
 yhat <- fitted(E3.sim, E3)

arm documentation built on April 1, 2024, 3:01 p.m.

Related to sim in arm...