| corKendall | R Documentation | 
For a data matrix x, compute the Kendall's tau
“correlation” matrix, i.e., all pairwise Kendall's taus
between the columns of x.
By default and when x has no missing values
(NAs), the fast O(n log(n)) algorithm of
cor.fk() is used.
corKendall(x, checkNA = TRUE,
           use = if(checkNA && anyNA(x)) "pairwise" else "everything")
x | 
 data, a n x p matrix (or less efficiently a data.frame), or a numeric vector which is treated as n x 1 matrix.  | 
checkNA | 
 logical indicating if   | 
use | 
 a string to determine the treatment of   | 
The p \times p matrix K of pairwise Kendall's taus, with
K[i,j] := tau(x[,i], x[,j]).
cor.fk() from pcaPP (used by default
when there are no missing values (NAs) in x).
etau() or fitCopula(*, method = "itau")
make use of corKendall().
## If there are no NA's, corKendall() is faster than cor(*, "kendall")
## and gives the same :
system.time(C1 <- cor(swiss, method="kendall"))
system.time(C2 <- corKendall(swiss))
stopifnot(all.equal(C1, C2,  tol = 1e-5))
## In the case of missing values (NA), corKendall() reverts to
## cor(*, "kendall", use = "pairwise") {no longer very fast} :
swM <- swiss # shorter names and three missings:
colnames(swM) <- abbreviate(colnames(swiss), min=6)
swM[1,2] <- swM[7,3] <- swM[25,5] <- NA
(C3 <- corKendall(swM)) # now automatically uses the same as
stopifnot(identical(C3, cor(swM, method="kendall", use="pairwise")))
## and is quite close to the non-missing "truth":
stopifnot(all.equal(unname(C3), unname(C2), tol = 0.06)) # rel.diff.= 0.055
try(corKendall(swM, checkNA=FALSE)) # --> Error
## the error is really from  pcaPP::cor.fk(swM)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.