Methods for functions Minimum and Maximum in Package ‘distr’

Description

Minimum and Maximum-methods

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
Minimum(e1, e2, ...)
Maximum(e1, e2, ...) 
## S4 method for signature 'AbscontDistribution,AbscontDistribution'
Minimum(e1,e2, ...)
## S4 method for signature 'DiscreteDistribution,DiscreteDistribution'
Minimum(e1,e2, ...)
## S4 method for signature 'AbscontDistribution,Dirac'
Minimum(e1,e2, 
                   withSimplify = getdistrOption("simplifyD"))
## S4 method for signature 'AcDcLcDistribution,AcDcLcDistribution'
Minimum(e1,e2, 
                   withSimplify = getdistrOption("simplifyD"))
## S4 method for signature 'AcDcLcDistribution,AcDcLcDistribution'
Maximum(e1,e2, 
                   withSimplify = getdistrOption("simplifyD"))
## S4 method for signature 'AbscontDistribution,numeric'
Minimum(e1,e2, ...)
## S4 method for signature 'DiscreteDistribution,numeric'
Minimum(e1,e2, ...)
## S4 method for signature 'AcDcLcDistribution,numeric'
Minimum(e1,e2,
                   withSimplify = getdistrOption("simplifyD"))
## S4 method for signature 'AcDcLcDistribution,numeric'
Maximum(e1,e2, 
                   withSimplify = getdistrOption("simplifyD"))

Arguments

e1

distribution object

e2

distribution object or numeric

...

further arguments (to be able to call various methods with the same arguments

withSimplify

logical; is result to be piped through a call to simplifyD?

Value

the corresponding distribution of the minimum / maximum

Methods

Minimum

signature(e1 = "AbscontDistribution", e2 = "AbscontDistribution"): returns the distribution of min(X1,X2), if X1,X2 are independent and distributed according to e1 and e2 respectively; the result is again of class "AbscontDistribution"

Minimum

signature(e1 = "DiscreteDistribution", e2 = "DiscreteDistribution"): returns the distribution of min(X1,X2), if X1,X2 are independent and distributed according to e1 and e2 respectively; the result is again of class "DiscreteDistribution"

Minimum

signature(e1 = "AbscontDistribution", e2 = "Dirac"): returns the distribution of min(X1,X2), if X1,X2 are distributed according to e1 and e2 respectively; the result is of class "UnivarLebDecDistribution"

Minimum

signature(e1 = "AcDcLcDistribution", e2 = "AcDcLcDistribution"): returns the distribution of min(X1,X2), if X1,X2 are distributed according to e1 and e2 respectively; the result is of class "UnivarLebDecDistribution"

Minimum

signature(e1 = "AcDcLcDistribution", e2 = "numeric"): if e2 = n, returns the distribution of min(X1,X2,...,Xn), if X1,X2, ..., Xn are i.i.d. according to e1; the result is of class "UnivarLebDecDistribution"

Maximum

signature(e1 = "AcDcLcDistribution", e2 = "AcDcLcDistribution"): returns the distribution of max(X1,X2), if X1,X2 are distributed according to e1 and e2 respectively; translates into -Minimum(-e1,-e2); the result is of class "UnivarLebDecDistribution"

Maximum

signature(e1 = "AcDcLcDistribution", e2 = "numeric"): if e2 = n, returns the distribution of max(X1,X2,...,Xn), if X1,X2, ..., Xn are i.i.d. according to e1; translates into -Minimum(-e1,e2); the result is of class "UnivarLebDecDistribution"

See Also

Huberize, Truncate

Examples

1
2
3
4
plot(Maximum(Unif(0,1), Minimum(Unif(0,1), Unif(0,1))))
plot(Minimum(Exp(4),4))
## a sometimes lengthy example...
## Not run: plot(Minimum(Norm(),Pois()))

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.