| RSM | R Documentation | 
This function computes the parameter estimates of a rating scale model for polytomous item responses by using CML estimation.
RSM(X, W, se = TRUE, sum0 = TRUE, etaStart)
| X | Input data matrix or data frame with item responses (starting from 0); rows represent individuals, columns represent items. Missing values are inserted as  | 
| W | Design matrix for the RSM. If omitted, the function will compute W automatically. | 
| se | If  | 
| sum0 | If  | 
| etaStart | A vector of starting values for the eta parameters can be specified. If missing, the 0-vector is used. | 
The design matrix approach transforms the RSM into a partial credit model
and estimates the corresponding basic parameters by using CML.
Available methods for RSM-objects are print, coef, model.matrix,
vcov, summary, logLik, person.parameters, plotICC, LRtest.
Returns an object of class 'Rm', 'eRm' and contains the log-likelihood value,
the parameter estimates and their standard errors.
| loglik | Conditional log-likelihood. | 
| iter | Number of iterations. | 
| npar | Number of parameters. | 
| convergence | See  | 
| etapar | Estimated basic item difficulty parameters (item and category parameters). | 
| se.eta | Standard errors of the estimated basic item parameters. | 
| betapar | Estimated item-category (easiness) parameters. | 
| se.beta | Standard errors of item parameters. | 
| hessian | Hessian matrix if  | 
| W | Design matrix. | 
| X | Data matrix. | 
| X01 | Dichotomized data matrix. | 
| call | The matched call. | 
Patrick Mair, Reinhold Hatzinger
Fischer, G. H., and Molenaar, I. (1995). Rasch Models - Foundations, Recent Developements, and Applications. Springer.
Mair, P., and Hatzinger, R. (2007). Extended Rasch modeling: The eRm package for the application of IRT models in R. Journal of Statistical Software, 20(9), 1-20.
Mair, P., and Hatzinger, R. (2007). CML based estimation of extended Rasch models with the eRm package in R. Psychology Science, 49, 26-43.
RM,PCM,LRtest
##RSM with 10 subjects, 3 items
res <- RSM(rsmdat)
res
summary(res)                            #eta and beta parameters with CI
thresholds(res)                         #threshold parameters
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.