glgm: Generalized Linear Geostatistical Models

glgm-methodsR Documentation

Generalized Linear Geostatistical Models

Description

Fits a generalized linear geostatistical model or a log-Gaussian Cox process using inla

Usage

## S4 method for signature 'ANY,ANY,ANY,ANY'
glgm(formula, data,  grid, covariates, buffer=0, shape=1, prior, ...) 
## S4 method for signature 'formula,SpatRaster,ANY,ANY'
glgm(formula, data,  grid, covariates, buffer=0, shape=1, prior, ...) 
## S4 method for signature 'formula,SpatVector,ANY,ANY'
glgm(formula, data,  grid, covariates, buffer=0, shape=1, prior, ...) 
## S4 method for signature 'formula,data.frame,SpatRaster,data.frame'
glgm(formula, data,  grid, covariates, buffer=0, shape=1, prior, ...) 
lgcp(formula=NULL, data,  grid, covariates=NULL, border, ...)

Arguments

data

An object of class SpatVector containing the data.

grid

Either an integer giving the number of cells in the x direction, or a raster object which will be used for the spatial random effect. If the cells in the raster are not square, the resolution in the y direction will be adjusted to make it so.

covariates

Either a single raster, a list of rasters or a raster stack containing covariate values used when making spatial predictions. Names of the raster layers or list elements correspond to names in the formula. If a covariate is missing from the data object it will be extracted from the rasters. Defaults to NULL for an intercept-only model.

formula

Model formula, defaults to a linear combination of each of the layers in the covariates object. The spatial random effect should not be supplied but the default can be overridden with a f(space,..) term. For glgm the response variable defaults to the first variable in the data object, and formula can be an integer or character string specifying the response variable. For lgcp, the formula should be one-sided.

prior

list with elements named range, sd, sdObs. See Details.

shape

Shape parameter for the Matern correlation function, must be 1 or 2.

buffer

Extra space padded around the data bounding box to reduce edge effects.

border

boundary of the region on which an LGCP is defined, passed to mask

...

Additional options passed to inla in the INLA package

Details

This function performs Bayesian inference for generalized linear geostatistical models with INLA. The Markov random field approximation on a regular lattice is used for the spatial random effect. The range parameter is the distance at which the correlation is 0.13, or

cov[U(s+h), U(s)] = (2^{1-\nu}/Gamma(\nu)) d^\nu besselK(d, \nu)

d= |h| \sqrt{8 \nu}/range

where \nu is the shape parameter. The range parameter produced by glgm multiplies the range parameter from INLA by the cell size.

Elements of prior can be named range, sd, or sdObs. Elements can consist of:

  • a single value giving the prior median for penalized complexity priors (exponential on the sd or 1/range).

  • a vector c(u=a, alpha=b) giving an quantile and probability for pc priors. For standard deviations alpha is an upper quantile, for the range parameter b = pr(1/range > 1/a).

  • a vector c(lower=a, upper=b) giving a 0.025 and 0.975 quantiles for the sd or range.

  • a list of the form list(prior='loggamma', param=c(1,2)) passed directly to inla.

  • a two-column matrix of prior densities for the sd or range.

Value

A list with two components named inla, raster, and parameters. inla contains the results of the call to the inla function. raster is a raster stack with the following layers:

random.

mean, sd, X0.0??quant: Posterior mean, standard deviation, and quantiles of the random effect

predict.

mean, sd, X0.0??quant: same for linear predictors, on the link scale

predict.exp

posterior mean of the exponential of the linear predictor

predict.invlogit

Only supplied if a binomial response variable was used.

parameters contains a list with elements:

summary

a table with parameter estimates and posterior quantiles

range, sd

prior and posterior distributions of range and standard deviations

See Also

https://www.r-inla.org

Examples

## Not run: 
# geostatistical model for the swiss rainfall data

if(requireNamespace("INLA", quietly=TRUE) ) {
  INLA::inla.setOption(num.threads=2)
  # not all versions of INLA support blas.num.threads
  try(INLA::inla.setOption(blas.num.threads=2), silent=TRUE)
} 

require("geostatsp")
data("swissRain")
swissRain = unwrap(swissRain)
swissAltitude = unwrap(swissAltitude)
swissBorder = unwrap(swissBorder)

swissRain$lograin = log(swissRain$rain)
swissFit =  glgm(formula="lograin", data=swissRain, 
	grid=30, 
	covariates=swissAltitude, family="gaussian", 
	buffer=2000,
	prior = list(sd=1, range=100*1000, sdObs = 2),
	control.inla = list(strategy='gaussian')
	)

if(!is.null(swissFit$parameters) ) {
	
	swissExc = excProb(swissFit, threshold=log(25))

	swissExcRE = excProb(swissFit$inla$marginals.random$space, 
		log(1.5),template=swissFit$raster)

	swissFit$parameters$summary

	matplot(
		swissFit$parameters$range$postK[,'x'],
		swissFit$parameters$range$postK[,c('y','prior')],
		type="l", lty=1, xlim = c(0, 1000),
		xlab = 'km', ylab='dens')
	legend('topright', lty=1, col=1:2, legend=c('post','prior'))

	plot(swissFit$raster[["predict.exp"]]) 

	mycol = c("green","yellow","orange","red")
	mybreaks = c(0, 0.2, 0.8, 0.95, 1)
	plot(swissBorder)
	plot(swissExc, breaks=mybreaks, col=mycol,add=TRUE,legend=FALSE)
	plot(swissBorder, add=TRUE)
	legend("topleft",legend=mybreaks, fill=c(NA,mycol))


	plot(swissBorder)
	plot(swissExcRE, breaks=mybreaks, col=mycol,add=TRUE,legend=FALSE)
	plot(swissBorder, add=TRUE)
	legend("topleft",legend=mybreaks, fill=c(NA,mycol))
}

		


# a log-Gaussian Cox process example

myPoints = vect(cbind(rbeta(100,2,2), rbeta(100,3,4)))


mycov = rast(matrix(rbinom(100, 1, 0.5), 10, 10), extent=ext(0, 1, 0, 1))
names(mycov)="x1"


if(requireNamespace("INLA", quietly=TRUE) ) {
  INLA::inla.setOption(num.threads=2)
  # not all versions of INLA support blas.num.threads
  try(INLA::inla.setOption(blas.num.threads=2), silent=TRUE)
}

res = lgcp(
	formula=~factor(x1),
	data=myPoints, 
	grid=squareRaster(ext(0,1,0,1), 20), covariates=mycov,
	prior=list(sd=c(0.9, 1.1), range=c(0.4, 0.41),
	control.inla = list(strategy='gaussian'), verbose=TRUE)
)
if(length(res$parameters)) {  
	plot(res$raster[["predict.exp"]])
	plot(myPoints,add=TRUE,col="#0000FF30",cex=0.5)
}

## End(Not run)

geostatsp documentation built on Dec. 24, 2024, 3 a.m.