globalboosttest: Testing the additional predictive value of high-dimensional data

'globalboosttest' implements a permutation-based testing procedure to globally test the (additional) predictive value of a large set of predictors given that a small set of predictors is already available. Currently, 'globalboosttest' supports binary outcomes (via logistic regression) and survival outcomes (via Cox regression). It is based on boosting regression as implemented in the package 'mboost'.

AuthorAnne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>, Torsten Hothorn <torsten.hothorn@stat.uni-muenchen.de>.
Date of publication2013-01-28 11:31:07
MaintainerAnne-Laure Boulesteix <boulesteix@ibe.med.uni-muenchen.de>
LicenseGPL version 2 or newer
Version1.1-1

View on R-Forge

Files

globalboosttest
globalboosttest/NAMESPACE
globalboosttest/data
globalboosttest/data/simdatabin.RData
globalboosttest/data/simdatasurv.RData
globalboosttest/R
globalboosttest/R/globalboosttest.r
globalboosttest/DESCRIPTION
globalboosttest/man
globalboosttest/man/simdatasurv.Rd globalboosttest/man/simdatabin.Rd globalboosttest/man/globalboosttest.Rd globalboosttest/man/globalboosttest-internal.Rd

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.