Nothing
#-- Hessian of the function: phi(vtheta):=-(logL(vtheta) / T) --#
fn_hessian <- function(v_theta, l_data) {
# retrieve data
m_y <- l_data[["m_y" ]]
m_ys <- l_data[["m_ys"]]
l_x <- l_data[["l_x" ]]
m_W <- l_data[["m_W" ]]
# sample size
N <- nrow(m_y)
TT <- ncol(m_y)
K <- length(l_x)
v_psi <- v_theta[1:N] # (N,)
v_beta <- v_theta[(N + 1):(N + (K * N))]; # (KN,) x 1
v_sgmsq <- v_theta[(N + (K * N) + 1):(N + (N * K) + N)] # (N,)
# reshape beta
m_beta_tr <- matrix(v_beta, K, N) # (K,N)
m_beta <- t(m_beta_tr) # (N,K)
v_sgm4h <- v_sgmsq^2
v_sgm6h <- v_sgmsq^3
# compute residuals
m_beta_times_x <- matrix(0, N, TT) # 0 needed for recursive sum; (N x T) with generic element \vbeta_{i}'\vx_{it}
for (k in 1:K) {
m_x_k <- l_x[[k]] # (N,T)
v_beta_k <- m_beta[, k] # (N,)
m_beta_times_x_k <- m_x_k * v_beta_k #!! (N,T) "times" (N,1) = (N,T)
m_beta_times_x <- m_beta_times_x + m_beta_times_x_k
}
m_psi_times_ys <- m_ys * v_psi #!! (N,T) "times" (N,1) = (N,T)
m_eps <- m_y - m_psi_times_ys - m_beta_times_x # N x T
v_ssr <- rowSums(m_eps^2) # (N,) sum of squared residuals: sum_t (eps_it)^2 !!crossprod()??
m_Psi <- diag(v_psi, nrow = N) # (N,N)
m_A <- diag(N) - (m_Psi %*% m_W)
det_mA <- det(m_A)
if (det_mA <= 0) {
#stop(' !!TODO: replace with a meaningful error message')
det_mA <- 1 ##################################################
}
# first derivative
m_Q <- m_W %*% solve(m_A) #!! IS THERE A BETTER WAY TO WRITE THIS LINE?
# second derivative
m_H11 <- (m_Q * t(m_Q)) + diag(rowSums(m_ys^2) / v_sgmsq / TT, nrow = N) # N x N
m_H13 <- diag(rowSums(m_ys * m_eps) / v_sgm4h / TT) # N x N
m_H33 <- diag(-(1 / 2 / v_sgm4h) + (v_ssr / v_sgm6h / TT)) # N x N
m_H12 <- matrix(0, N, N * K)
m_H22 <- matrix(0, N * K, N * K)
m_H23 <- matrix(0, N * K, N)
# Note 1: the loop below can be probably eliminated in the same way v_dphi_dvbeta is computed above
# Note 2: the code can be made probably faster by using sparse matrices
for (i in 1:N) {
ind <- ((i - 1) * K + 1):(i * K) #!! should I wrap this expression in c()?
v_ysi <- m_ys[i, ] # (T,)
m_Xi <- matrix(NA_real_, nrow = TT, ncol = K)
for (k in 1:K) {
m_x_k <- l_x[[k]] # (N,T)
m_Xi[, k] <- m_x_k[i, ] # (T,)
}
v_epsi <- m_eps[i, ] # (T,)
sgmsqi <- v_sgmsq[[i]]
sgm4hi <- v_sgm4h[[i]]
stopifnot(K > 1) #!! I think this bit of the code may not work when K=1
m_H12[i, ind] <- (rbind(v_ysi) %*% m_Xi) / sgmsqi / TT # (1,K)
m_H22[ind, ind] <- (t(m_Xi) %*% m_Xi) / sgmsqi / TT # (K,K)
m_H23[ind, i] <- (t(m_Xi) %*% cbind(v_epsi)) / sgm4hi / TT # (K,1)
}
m_H <- rbind(cbind(m_H11, m_H12, m_H13),
cbind(t(m_H12), m_H22, m_H23),
cbind(t(m_H13), t(m_H23), m_H33))
#browser()
#m_H <- Matrix::Matrix(m_H)
#m_H <- Matrix::Matrix(m_H, sparse = TRUE)
# impose sparsity as requested by trustOptim::trust.optim()
m_H <- as(m_H,"CsparseMatrix") #!! ASK GIOVANNI: isn't it a waste to make a dense matrix sparse. Can we construct it sparse already?
#print(class(m_H))
#browser()
# return
m_H
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.