| da.norm | R Documentation | 
Data augmentation under a normal-inverted Wishart prior. If no prior is specified by the user, the usual "noninformative" prior for the multivariate normal distribution is used. This function simulates one or more iterations of a single Markov chain. Each iteration consists of a random imputation of the missing data given the observed data and the current parameter value (I-step), followed by a draw from the posterior distribution of the parameter given the observed data and the imputed data (P-step).
da.norm(s, start, prior, steps=1, showits=FALSE, return.ymis=FALSE)
| s | summary list of an incomplete normal data matrix produced by the
function  | 
| start | starting value of the parameter.  This is a parameter vector in packed
storage, such as one created by the function  | 
| prior | optional prior distribution. This is a list containing the
hyperparameters of a normal-inverted Wishart distribution. In order,
the elements of the list are: tau (a scalar), m (a scalar), mu0 (a
vector of length  | 
| steps | number of data augmentation iterations to be simulated. | 
| showits | if  | 
| return.ymis | if  | 
if return.ymis=FALSE, returns a parameter vector, the result of the last
P-step. If the value of steps was large enough to guarantee
approximate stationarity, then this parameter can be regarded as a
proper draw from the observed-data posterior, independent of start.
If return.ymis=TRUE, then this function returns a list of the following
two components:
| parameter | a parameter vector, the result of the last P-step | 
| ymis | a vector of missing values, the result of the last I-step.  The length
of this vector is  | 
Before this function may be used, the random number generator seed
must be initialized with rngseed at least once in the current S
session.
See Chapter 5 of Schafer (1996).
rngseed, em.norm, prelim.norm, and getparam.norm.
data(mdata)
s  <-  prelim.norm(mdata)
thetahat <- em.norm(s)   #find the MLE for a starting value
rngseed(1234567)   #set random number generator seed
theta <- da.norm(s,thetahat,steps=20,showits=TRUE)  # take 20 steps
getparam.norm(s,theta) # look at result
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.