hessutils: Hessian utilities

Hessian utilitiesR Documentation

Hessian utilities

Description

Fast multiplication of Hessian and vector where computation of the full Hessian is not needed. Or determine the diagonal of the Hessian when non-diagonal entries are not needed or are nearly zero.

Usage

  hessvec(f, x, v, csd = FALSE, ...)

  hessdiag(f, x, ...)

Arguments

f

function whose hessian is to be computed.

x

point in R^n.

v

vector of length n.

csd

logocal, shall complex-step be applied.

...

more arguments to be passed to the function.

Details

hessvec computes the product of a Hessian of a function times a vector without deriving the full Hessian by approximating the gradient (see the reference). If the function allows for the complex-step method, the gradient can be calculated much more accurate (see grad_csd).

hessdiag computes only the diagonal of the Hessian by applying the central difference formula of second order to approximate the partial derivatives.

Value

hessvec returns the product H(f,x) * v as a vector.

hessdiag returns the diagonal of the Hessian of f.

References

B.A. Pearlmutter, Fast Exact Multiplication by the Hessian, Neural Computation (1994), Vol. 6, Issue 1, pp. 147-160.

See Also

hessian

Examples

  ## Not run: 
    set.seed(1237); n <- 100
    a <- runif(n); b <- rnorm(n)
    fn <- function(x, a, b) sum(exp(-a*x)*sin(b*pi*x))
    x0 <- rep(1, n)
    v0 <- rexp(n, rate=0.1)
    
    # compute with full hessian
    h0 <- hessian(fn, x0, a = a, b = b)             # n=100 runtimes
    v1 <- c(h0 %*% v0)                              # 0.167   sec
    
    v2 <- hessvec(fn, x0, v0, a = a, b = b)         # 0.00209 sec
    v3 <- hessvec(fn, x0, v0, csd=TRUE,a=a, b=b)    # 0.00145 sec
    v4 <- hessdiag(fn, x0, a = a, b = b) * v0       # 0.00204 sec
    
    # compare with exact analytical Hessian
    hex <- diag((a^2-b^2*pi^2)*exp(-a*x0)*sin(b*pi*x0) - 
                 2*a*b*pi*exp(-a*x0)*cos(b*pi*x0))
    vex <- c(hex %*% v0)

    max(abs(vex - v1))          # 2.48e-05
    max(abs(vex - v2))          # 7.15e-05
    max(abs(vex - v3))          # 0.09e-05
    max(abs(vex - v4))          # 2.46e-05 
## End(Not run)

pracma documentation built on March 19, 2024, 3:05 a.m.