Nothing
##
## l a m b e r t W . R Lambert W Function
##
lambertWp <- function(x) {
if (!is.numeric(x))
stop("Argument 'x' must be a numeric (real) vector.")
if (length(x) == 1) {
if (x < -1/exp(1)) return(NaN)
if (x == -1/exp(1)) return(-1)
# compute first iteration of $W_0$
if (x <= 1) {
eta <- 2 + 2*exp(1)*x;
f2 <- 3*sqrt(2) + 6 - (((2237+1457*sqrt(2))*exp(1) - 4108*sqrt(2) - 5764)*sqrt(eta)) /
((215+199*sqrt(2))*exp(1) - 430*sqrt(2)-796)
f1 <- (1-1/sqrt(2))*(f2+sqrt(2));
w0 <- -1 + sqrt(eta)/(1 + f1*sqrt(eta)/(f2 + sqrt(eta)));
} else {
w0 = log( 6*x/(5*log( 12/5*(x/log(1+12*x/5)) )) )
}
# w0 <- 1
w1 <- w0 - (w0*exp(w0)-x)/((w0+1)*exp(w0)-(w0+2)*(w0*exp(w0)-x)/(2*w0+2))
while(abs(w1-w0) > 1e-15) {
w0 <- w1
w1 <- w0 - (w0*exp(w0)-x)/((w0+1)*exp(w0)-(w0+2)*(w0*exp(w0)-x)/(2*w0+2))
}
return(w1)
} else {
sapply(x, lambertWp)
}
}
lambertWn <- function(x) {
if (!is.numeric(x))
stop("Argument 'x' must be a numeric (real) scalar.")
if (length(x) == 1) {
if (x < -exp(-1) || x >= 0) return(NaN)
if (x == exp(-1)) return(-1)
# compute first approximation of $W_-1$
m1 <- 0.3361; m2 <- -0.0042; m3 <- -0.0201
sigma <- -1 - log(-x)
w0 <- -1 - sigma - 2/m1*(1-1/(1 + (m1*sqrt(sigma/2)) /
(1 + m2*sigma*exp(m3*sqrt(sigma)))))
r <- abs(x - w0*exp(w0))
while (r > 1e-15) {
w1 <- w0 - (w0*exp(w0)-x) /
(exp(w0)*(w0+1)-(w0+2)*(w0*exp(w0)-x)/(2*w0+2))
r <- abs(x - w1*exp(w1) )
w0 <- w1
}
return(w0)
} else {
sapply(x, lambertWn)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.