| rcCIR | R Documentation | 
Density, distribution function, quantile function and random generation for the conditional law X(t+D_t) | X(t)=x0 of the Cox-Ingersoll-Ross process.
dcCIR(x, Dt, x0, theta, log = FALSE) pcCIR(x, Dt, x0, theta, lower.tail = TRUE, log.p = FALSE) qcCIR(p, Dt, x0, theta, lower.tail = TRUE, log.p = FALSE) rcCIR(n=1, Dt, x0, theta)
| x | vector of quantiles. | 
| p | vector of probabilities. | 
| Dt | lag or time. | 
| x0 | the value of the process at time  | 
| theta | parameter of the Ornstein-Uhlenbeck process; see details. | 
| n | number of random numbers to generate from the conditional distribution. | 
| log, log.p | logical; if TRUE, probabilities p are given as log(p). | 
| lower.tail | logical; if TRUE (default), probabilities are  | 
This function returns quantities related to the conditional law of the process solution of
dX_t = (theta[1]-theta[2]*Xt)*dt + theta[3]*sqrt(X_t)*dWt.
Constraints: 2*theta[1]> theta[3]^2, all theta positive.
| x | a numeric vector | 
Stefano Maria Iacus
Cox, J.C., Ingersoll, J.E., Ross, S.A. (1985) A theory of the term structure of interest rates, Econometrica, 53, 385-408.
rsCIR
rcCIR(n=1, Dt=0.1, x0=1, theta=c(6,2,2))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.