| Kenv.tor | R Documentation |
Compute envelope of K12hat from random toroidal shifts of two point patterns.
Kenv.tor(pts1,pts2,poly,nsim,s,quiet=FALSE)
pts1 |
First point data set. |
pts2 |
Second point data set. |
poly |
Polygon containing the points. |
nsim |
Number of random toroidal shifts to do. |
s |
Vector of distances at which to calculate the envelope. |
quiet |
If FALSE, print a message after every simulation for progress monitoring. If true, print no messages. |
The second point data set is randomly shifted using rtor.shift
in the rectangle defined by poly. Then k12hat is called
to compute K12hat for the two patterns.
The upper and lower values of K12hat over the ntor
toroidal shifts are returned.
A list with two components, called $upper and $lower. Each
component is a vector like s.
Rowlingson, B. and Diggle, P. 1993 Splancs: spatial point pattern analysis code in S-Plus. Computers and Geosciences, 19, 627-655; the original sources can be accessed at: https://www.maths.lancs.ac.uk/~rowlings/Splancs/. See also Bivand, R. and Gebhardt, A. 2000 Implementing functions for spatial statistical analysis using the R language. Journal of Geographical Systems, 2, 307-317.
rtor.shift,k12hat
data(okwhite) data(okblack) okpoly <- list(x=c(okwhite$x, okblack$x), y=c(okwhite$y, okblack$y)) plot(seq(5,80,5), sqrt(k12hat(as.points(okwhite), as.points(okblack), bboxx(bbox(as.points(okpoly))), seq(5,80,5))/pi) - seq(5,80,5), xlab="distance", ylab=expression(hat(L)[12]), ylim=c(-35,35), type="l", main="Simulation envelopes, random toroidal shifts") env.ok <- Kenv.tor(as.points(okwhite), as.points(okblack), bboxx(bbox(as.points(okpoly))), nsim=29, s=seq(5,80,5)) lines(seq(5,80,5), sqrt(env.ok$upper/pi)-seq(5,80,5), lty=2) lines(seq(5,80,5), sqrt(env.ok$lower/pi)-seq(5,80,5), lty=2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.