Description Usage Arguments Value References See Also Examples
View source: R/analysis_on_quantification.R
Perform an OPLS-DA with the function of the ropls
package on a
SummarizedExperiment
object obtained with the
formatForAnalysis
function
1 2 3 4 5 6 7 8 9 |
analysis_data |
A |
condition |
The name of the design variable (two level factor) specifying the response to be explained. |
cross.val |
Number of cross validation folds. |
thres.VIP |
A number specifying the VIP threshold used to identify influential variables. |
type.data |
Type of data used for the analyses (e.g.,
|
seed |
Random seed to control randomness of cross validation folds. |
... |
Further arguments to be passed to the function
|
A S4 object of class AnalysisResults containing OPLS-DA results.
Trygg, J. and Wold, S. (2002). Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics, 16(3), 119<e2><80><93>128.
Thevenot, E.A., Roux, A., Xu, Y., Ezan, E., Junot, C. 2015. Analysis of the human adult urinary metabolome variations with age, body mass index and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. Journal of Proteome Research. 14:3322-3335.
AnalysisResults
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | # Import quantification results
if (require("ASICSdata", quietly = TRUE)) {
quantif_path <- system.file("extdata", "results_ASICS.txt",
package = "ASICSdata")
quantification <- read.table(quantif_path, header = TRUE, row.names = 1)
# Import design
design <- read.table(system.file("extdata", "design_diabete_example.txt",
package = "ASICSdata"), header = TRUE)
design$condition <- factor(design$condition)
# Create object for analysis and remove features with more than 25% of
# zeros
analysis_obj <- formatForAnalysis(quantification,
zero.threshold = 25, design = design)
res_oplsda <- oplsda(analysis_obj, "condition", orthoI = 1)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.