extractRegions: extract significant regions

Description Usage Arguments Details Value Examples

View source: R/extract.R

Description

extract significant windows from output of resultsDEWSeq using the supplied padj and log2FoldChange cut-offs and merge these significant windows to regions and create the following columns for each significant region:

Usage

1
2
3
extractRegions(windowRes, padjCol = "padj", padjThresh = 0.05,
  log2FoldChangeCol = "log2FoldChange", log2FoldChangeThresh = 1,
  start0based = TRUE)

Arguments

windowRes

data.frame, output from resultsDEWSeq

padjCol

character, name of the adjusted pvalue column (default: padj)

padjThresh

numeric, threshold for p-adjusted value (default: 0.05)

log2FoldChangeCol

character, name of the log2foldchange column (default: log2FoldChange)

log2FoldChangeThresh

numeric, threshold for log2foldchange value (default:1)

start0based

logical, TRUE (default) or FALSE. If TRUE, then the start positions in windowRes is considered to be 0-based

Details

The output data.frame from this function will have the following columns:

Value

data.frame

Examples

1
2
3
4
5
data("slbpWindows")
# using default cut-off thresholds,
# 'pSlidingWindows.adj' padj value columns
slbpRegions <- extractRegions(slbpWindows,
padjCol = 'pSlidingWindows.adj')

DEWSeq documentation built on Nov. 28, 2020, 2:01 a.m.