Description Author(s) References See Also
Package GSAR provides a set of statistical methods for
self-contained gene set analysis. It consists of two-sample multivariate
nonparametric statistical methods to test a null hypothesis
against specific alternative hypotheses, such as differences in shift
(functions KStest
and MDtest
), scale (functions
RKStest
, RMDtest
, and AggrFtest
)
or correlation structure (function GSNCAtest
) between two
conditions. It also offers a graphical visualization tool for correlation
networks to examine the change in the net correlation structure of a gene
set between two conditions (function plotMST2.pathway
).
The visualization scheme is based on the minimum spanning trees (MSTs).
Function findMST2
is used to find the unioin of the first
and second MSTs. The same tool works as well for protein-protein
interaction (PPI) networks to highlight the most essential interactions
among proteins and reveal fine network structure as was already shown in
Zybailov et. al. 2016. Function findMST2.PPI
is used to
find the unioin of the first and second MSTs of PPI networks.
Some of the methods available in this package were
proposed in Rahmatallah et. al. 2014 and Friedman and Rafsky 1979. The
performance of different methods available in this package was thoroughly
tested using simulated data and microarray datasets in
Rahmatallah et. al. 2012 and Rahmatallah et. al. 2014. These methods can
also be applied to RNA-Seq count data given that proper normalization is
used. Proper normalization must take into account both the within-sample
differences (mainly gene length) and between-samples differences
(library size or sequencing depth). However, because the count data often
follows the negative binomial distribution, special attention should be
paid to applying the variance tests (RKStest
,
RMDtest
, and AggrFtest
). The variance of the
negative binomial distribution is proportional to it's mean and
multivariate tests of variance designed specifically for RNA-seq count
data are virtually unavailable. The performance of variance tests in this
package with count data highly depends on the used normalization and
remains currenly under-explored.
Yasir Rahmatallah <yrahmatallah@uams.edu>, Galina Glazko <gvglazko@uams.edu>
Maintainer: Yasir Rahmatallah <yrahmatallah@uams.edu>, Galina Glazko <gvglazko@uams.edu>
Rahmatallah Y., Emmert-Streib F. and Glazko G. (2014) Gene sets net correlations analysis (GSNCA): a multivariate differential coexpression test for gene sets. Bioinformatics 30, 360–368.
Rahmatallah Y., Emmert-Streib F. and Glazko G. (2012) Gene set analysis for self-contained tests: complex null and specific alternative hypotheses. Bioinformatics 28, 3073–3080.
Friedman J. and Rafsky L. (1979) Multivariate generalization of the Wald-Wolfowitz and Smirnov two-sample tests. Ann. Stat. 7, 697–717.
Zybailov B., Byrd A., Glazko G., Rahmatallah Y. and Raney K. (2016) Protein-protein interaction analysis for functional characterization of helicases. Methods, 108, 56–64.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.