Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(
collapse=TRUE,
comment="#>",
warning=FALSE,
error=FALSE,
eval=FALSE,
crop = NULL
)
## ----library, message=FALSE, warning=FALSE, error=FALSE-----------------------
# library(BiocStyle)
# library(HPAanalyze)
# library(dplyr)
# library(tibble)
# library(readr)
# library(tidyr)
## ----echo=FALSE, eval=TRUE, fig.cap="The 'Fields >>' button.", out.width = '100%'----
knitr::include_graphics("figures/query_fields.png")
## ----echo=FALSE, eval=TRUE, fig.cap="Build your query with the drop-down menus.", out.width = '100%'----
knitr::include_graphics("figures/query_dropdown.png")
## ----echo=FALSE, eval=TRUE, fig.cap="Click the 'Search' button.", out.width = '100%'----
knitr::include_graphics("figures/query_search.png")
## ----echo=FALSE, eval=TRUE, fig.cap="Copy the link to the tsv file.", out.width = '100%'----
knitr::include_graphics("figures/query_tsvlink.png")
## -----------------------------------------------------------------------------
# ## The link to your query tsv
# my_hpa_query <- "https://www.proteinatlas.org/search/protein_class%3ACD+markers+AND+normal_expression%3ACerebral+cortex%3BAny%3BNot+detected%2CLow+AND+prognostic%3AGlioma%3BUnfavourable?format=tsv"
#
# ## Create a temporary file as destination for the download
# temp <- tempfile("query", fileext=c(".tsv.gz"))
#
# ## Download to the temporary file
# download.file(url=my_hpa_query, destfile = temp, method = "curl", mode = "wb")
#
# ## read the file into a data frame
# query_df <- readr::read_tsv(temp)
#
# ## Unlink the temp file
# unlink(temp)
## -----------------------------------------------------------------------------
# tibble::glimpse(query_df)
#
# #> Observations: 6
# #> Variables: 22
# #> $ Gene <chr> "CD81", "NRP1", "PRNP", "SDC1", "THY...
# #> $ `Gene synonym` <chr> "TAPA-1, TAPA1, TSPAN28", "CD304, NR...
# #> $ Ensembl <chr> "ENSG00000110651", "ENSG00000099250"...
# #> $ `Gene description` <chr> "CD81 molecule", "Neuropilin 1", "Pr...
# #> $ Chromosome <dbl> 11, 10, 20, 2, 11, 17
# #> $ Position <chr> "2376177-2397419", "33177492-3333626...
# #> $ `Protein class` <chr> "CD markers, Disease related genes, ...
# #> $ Evidence <chr> "Evidence at protein level", "Eviden...
# #> $ Antibody <chr> "CAB002507, HPA007234", "CAB004511, ...
# #> $ `Reliability (IH)` <chr> "Supported", "Approved", "Enhanced",...
# #> $ `Reliability (Mouse Brain)` <lgl> NA, NA, NA, NA, NA, NA
# #> $ `Reliability (IF)` <chr> "Supported", "Uncertain", "Approved"...
# #> $ `Subcellular location` <chr> "Plasma membrane", "Mitochondria", "...
# #> $ `Prognostic p-value` <chr> "Glioma:5.12e-5 (unfavourable), Panc...
# #> $ `RNA cancer category` <chr> "Expressed in all", "Expressed in al...
# #> $ `RNA tissue category` <chr> "Expressed in all", "Expressed in al...
# #> $ `RNA TS` <lgl> NA, NA, NA, NA, NA, NA
# #> $ `RNA TS TPM` <chr> NA, NA, NA, "esophagus: 250.7;skin: ...
# #> $ `TPM max in non-specific` <chr> "seminal vesicle: 2273.0", "placenta...
# #> $ `RNA cell line category` <chr> "Cell line enhanced", "Cell line enh...
# #> $ `RNA CS` <lgl> NA, NA, NA, NA, NA, NA
# #> $ `RNA CS TPM` <chr> "ASC diff: 2031.3", "U-87 MG: 437.4"...
## -----------------------------------------------------------------------------
# ## since the query give you the latest HPA version, get the latest datasets to match
# latest_datasets <- hpaDownload()
#
# hpaVis(data = latest_datasets,
# targetGene = query_df$Gene,
# targetTissue = "cerebral cortex",
# targetCancer = "glioma")
## -----------------------------------------------------------------------------
# ## Download and import the xml files for proteins of interest
# query_xml_list <- lapply(query_df$Ensembl, hpaXmlGet)
#
# ## Extract protein classes as a list of data frame
# query_protein_classes <- lapply(query_xml_list, hpaXmlProtClass)
# names(query_protein_classes) <- query_df$Gene # name list items
#
# ## Turn the list into a data frame
# query_protein_classes_df <-
# tidyr::unnest(tibble::enframe(query_protein_classes, name = "protein"))
#
# glimpse(query_protein_classes_df)
#
# #> Observations: 122
# #> Variables: 5
# #> $ protein <chr> "CD81", "CD81", "CD81", "CD81", "CD81", "CD81", "CD81"...
# #> $ id <chr> "Cd", "Ja", "Jf", "Ma", "Md", "Me", "Mf", "Mg", "Mh", ...
# #> $ name <chr> "CD markers", "Transporters", "Accessory Factors Invol...
# #> $ parent_id <chr> NA, NA, "Ja", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, ...
# #> $ source <chr> "UniProt", "TCDB", "TCDB", "MDM", "MDM", "MEMSAT3", "M...
#
#
# ## Which proteins in our list are also potential drug targets?
# filter(query_protein_classes_df, name == "Potential drug targets")
#
# #> # A tibble: 2 x 5
# #> protein id name parent_id source
# #> <chr> <chr> <chr> <chr> <chr>
# #> 1 CD81 Pd Potential drug targets <NA> HPA
# #> 2 PRNP Pd Potential drug targets <NA> HPA
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.