Description Usage Arguments Value Examples
The standard method to calculate the correlation score used to judge biclusters in MCbiclust
1 | CorScoreCalc(gene.expr.matrix, sample.vec)
|
gene.expr.matrix |
Gene expression matrix with genes as rows and samples as columns |
sample.vec |
Vector of samples |
The correlation score
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | data(CCLE_small)
data(Mitochondrial_genes)
mito.loc <- which(row.names(CCLE_small) %in% Mitochondrial_genes)
CCLE.mito <- CCLE_small[mito.loc,]
random.seed <- sample(seq(length = dim(CCLE.mito)[2]),10)
CCLE.seed <- FindSeed(gem = CCLE.mito,
seed.size = 10,
iterations = 100,
messages = 100)
CorScoreCalc(CCLE.mito, random.seed)
CorScoreCalc(CCLE.mito, CCLE.seed)
CCLE.hicor.genes <- as.numeric(HclustGenesHiCor(CCLE.mito,
CCLE.seed,
cuts = 8))
CorScoreCalc(CCLE.mito[CCLE.hicor.genes,], CCLE.seed)
|
Iteration Correlation Score
100 0.36178
[1] 0.2871502
[1] 0.3617806
[1] 0.3862503
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.