plotAllNetworks: Higlighting ranked paths over multiple network...

Description Usage Arguments Value Author(s) See Also Examples

View source: R/plotPath.R

Description

This function highlighting ranked paths over different network representations, metabolic, reaction and gene networks. The functions finds equivalent paths across different networks and marks them.

Usage

1
2
3
plotAllNetworks(paths, metabolic.net = NULL, reaction.net = NULL,
  gene.net = NULL, path.clusters = NULL, plot.clusters = TRUE,
  col.palette = palette(), layout = layout.auto, ...)

Arguments

paths

The result of pathRanker.

metabolic.net

A bipartite metabolic network.

reaction.net

A reaction network, resulting from makeReactionNetwork.

gene.net

A gene network, resulting from makeGeneNetwork.

path.clusters

The result from pathCluster or pathClassifier.

plot.clusters

Whether to plot clustering information, as generated by plotClusters

col.palette

A color palette, or a palette generating function (ex:

col.palette=rainbow

).

layout

Either a graph layout function, or a two-column matrix specifiying vertex coordinates.

...

Additional arguments passed to plotNetwork.

Value

Highlights the path list over all provided networks.

Author(s)

Ahmed Mohamed

See Also

Other Plotting methods: colorVertexByAttr, layoutVertexByAttr, plotClassifierROC, plotClusterMatrix, plotCytoscapeGML, plotNetwork, plotPathClassifier, plotPaths

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
	## Prepare a weighted reaction network.
	## Conver a metabolic network to a reaction network.
 data(ex_sbml) # bipartite metabolic network of Carbohydrate metabolism.
 rgraph <- makeReactionNetwork(ex_sbml, simplify=TRUE)

	## Assign edge weights based on Affymetrix attributes and microarray dataset.
 # Calculate Pearson's correlation.
	data(ex_microarray)	# Part of ALL dataset.
	rgraph <- assignEdgeWeights(microarray = ex_microarray, graph = rgraph,
		weight.method = "cor", use.attr="miriam.uniprot",
		y=factor(colnames(ex_microarray)), bootstrap = FALSE)

	## Get ranked paths using probabilistic shortest paths.
 ranked.p <- pathRanker(rgraph, method="prob.shortest.path",
					K=20, minPathSize=6)

plotAllNetworks(ranked.p, metabolic.net = ex_sbml, reaction.net = rgraph,
					vertex.label = "", vertex.size = 4)

NetPathMiner documentation built on Nov. 8, 2020, 8:20 p.m.