Description Usage Arguments Details Value Author(s) See Also Examples
This function visualises an 'OpenStatsMM' object
1 2 |
x |
an instance of ‘OpenStatsMM' result from OpenStatsAnalysis(method = ’MM') function |
main |
a string to be pasted to the title of the plots |
ask |
see 'ask' in 'par()' function. Default FALSE |
mfrow |
the screen partition. see 'mfrow' argument in the 'par' function. Default c(2,2) then all plots display in one screen. |
... |
other parameters that can be passed to the 'plot' function |
The plot function creates some visualisations for the linear mixed model framework:
- Residual versus fitted values
- Residual density plot and the normality test p-value
- Residual Q-Q plot
- The density plot of the response variable and the normality test p-value
Not applicable
Hamed Haseli Mashhadi <hamedhm@ebi.ac.uk>
OpenStatsAnalysis
, plot.OpenStatsFE
, plot.OpenStatsRR
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | ####################################################################
# Data preparation
####################################################################
#################
# Continuous data - Creating OpenStatsList object
#################
fileCon <- system.file("extdata", "test_continuous.csv", package = "OpenStats")
test_Cont <- OpenStatsList(
dataset = read.csv(fileCon),
testGenotype = "experimental",
refGenotype = "control",
dataset.colname.genotype = "biological_sample_group",
dataset.colname.batch = "date_of_experiment",
dataset.colname.lifestage = NULL,
dataset.colname.weight = "weight",
dataset.colname.sex = "sex"
)
#################
# Optimised Linear Mixed model (MM) framework
#################
MM1_result <- OpenStatsAnalysis(
OpenStatsList = test_Cont,
method = "MM",
MM_fixed = data_point ~ Genotype + Weight
)
print(MM1_result, col = 2, main = "Optimised model")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.