Description Usage Arguments Value Author(s) References See Also Examples
Proteins can be classified by using networks to identify functionally closely related proteins.
1 2 3 4 |
target |
set of interesting proteins or target class |
kernel |
the regularized Laplacian matrix for a graph |
top |
number of top proteins most closely related to target class (default: all proteins except for target and pseudo-absence class) |
cross |
if a integer value k>0 is specified, a k-fold cross validation on the training data is performed to assess the quality of the model |
C |
cost of constraints violation for SVM (default: 1) |
nu |
The nu parameter for OCSVM (default: 0.2) |
epsilon |
epsilon in the insensitive-loss function for OCSVM (default: 0.1) |
cache1 |
cache memory in MB for OCSVM (default: 40) |
tol1 |
tolerance of termination criterion for OCSVM (default: 0.001) |
shrinking1 |
option whether to use the shrinking-heuristics for OCSVM (default: TRUE) |
cache2 |
cache memory in MB for SVM (default: 40) |
tol2 |
tolerance of termination criterion for SVM (default: 0.001) |
shrinking2 |
option whether to use the shrinking-heuristics for SVM (default: TRUE) |
list |
list of a target class used in the model |
error |
training error |
CVerror |
cross validation error, (when cross > 0) |
top |
top proteins |
score |
decision values for top proteins |
Dongmin Jung, Xijin Ge
Senay, S. D. et al. (2013). Novel three-step pseudo-absence selection technique for improved species distribution modelling. PLOS ONE. 8(8), e71218.
ksvm
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | # example 1
## Not run:
string.db.9606 <- STRINGdb$new(version = '11', species = 9606,
score_threshold = 999)
string.db.9606.graph <- string.db.9606$get_graph()
K.9606 <- net.kernel(string.db.9606.graph)
rownames(K.9606) <- substring(rownames(K.9606), 6)
colnames(K.9606) <- substring(colnames(K.9606), 6)
target <- colnames(K.9606)[1:100]
infer <- net.infer(target, K.9606, 10)
## End(Not run)
# example 2
data(litG)
litG <- igraph.from.graphNEL(litG)
sg <- decompose(litG, min.vertices = 50)
sg <- sg[[1]]
K <- net.kernel(sg)
litG.infer <- net.infer(names(V(sg))[1:10], K, top=20)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.