Description Usage Arguments Value Author(s) See Also Examples
This function is designed for mouse protein-protein interaction from STRING database. Default format is 'mgi'. The number of proteins is 10 in default. Note that the number of proteins used as a target may be different from the number of proteins in the input since mapping between formats is not always one-to-one in getBM.
1 2 | ppi.infer.mouse(target, kernel, top = 10, classifier = net.infer,
input = "mgi_symbol", output = "mgi_symbol", ...)
|
target |
set of interesting proteins or target class |
kernel |
the regularized Laplacian matrix for a graph |
top |
number of top proteins most closely related to target class (default: 10) |
classifier |
net.infer or net.infer.ST (default: net.infer) |
input |
input format |
output |
output format |
... |
additional parameters for the chosen classifier |
list |
list of a target class used in the model |
error |
training error |
CVerror |
cross validation error, (when cross > 0 in net.infer) |
top |
top proteins |
score |
decision values for top proteins |
Dongmin Jung, Xijin Ge
net.infer, net.infer.ST, getBM
1 2 3 4 5 6 7 8 | string.db.10090 <- STRINGdb$new(version = '11', species = 10090,
score_threshold = 999)
string.db.10090.graph <- string.db.10090$get_graph()
K.10090 <- net.kernel(string.db.10090.graph)
rownames(K.10090) <- substring(rownames(K.10090), 7)
colnames(K.10090) <- substring(colnames(K.10090), 7)
target <- colnames(K.10090)[1:100]
infer.mouse <- ppi.infer.mouse(target, K.10090, input="ensembl_peptide_id")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.