Nothing
library(PathNetData)
data(brain_regions)
data(A)
data(pathway)
# tests row-wise refactoring works as expected for calculating Direct Evidence
test_enrich.DE_rowise <- function() {
evidence_column <- 7
br <- brain_regions[100:500,] # subset for speed
tmp <- PathNet:::construct.DirectEvidence(br, evidence_column)
DirectEvidence <- tmp$DirectEvidence
checkEquals(401, length(DirectEvidence))
gene_ID <- tmp$gene_ID
# setup
Adjacency <- A[rownames(A) %in% gene_ID,rownames(A) %in% gene_ID]
checkEquals(c(113, 113), dim(Adjacency))
observe <- rep(FALSE, nrow(Adjacency))
names(observe) <- rownames(Adjacency)
diag(Adjacency) <- 0
# original loop
DER <- rep(NA, nrow(Adjacency))
for (i in 1:nrow(Adjacency))
{
DER[i] <- DirectEvidence[gene_ID %in% names(observe[i])]
}
# new sapply
DER2 <- sapply(1:nrow(Adjacency), function(i) { DirectEvidence[gene_ID %in% names(observe[i]) ]})
checkEquals(DER, DER2)
checkEquals(0.683263367, DER[1], tolerance=0.00001)
checkEquals(0.750759287, DER[113], tolerance=0.00001)
}
# Test calculating the pathway links
test_pathway_links <- function() {
pathwayNames <- sort(unique(pathway[,3]))
links <- PathNet:::construct.pathway_links(pathway, pathwayNames)
# Check length and spot check counts
checkEquals(130, length(links))
checkEquals(0, links[1])
checkEquals(1162, links[80])
checkEquals(851, links[130])
}
# Test main enrichment function
test_enrichment <- function() {
evidence <- brain_regions[1:100,] # subset for speed requirements
#evidence <- brain_regions
set.seed(123)
z <- PathNet(Enrichment_Analysis = TRUE,
DirectEvidence_info = evidence,
Adjacency = A,
pathway = pathway,
Column_DirectEvidence = 7,
n_perm = 1, threshold = 0.05)
# Enrichment results
results <- z$enrichment_results
checkEquals(130, nrow(results))
idx <- 10
checkEquals('Insulin signaling pathway', as.character(results$Name[idx]))
checkEquals(2, results$No_of_Genes[idx])
checkEquals(1, results$Sig_Direct[idx])
checkEquals(1, results$Sig_Combi[idx])
checkEquals(0.4857143, results$p_Hyper[idx], tolerance=0.00001)
checkEquals(1, results$p_Hyper_FWER[idx])
checkEquals(0.4563265, results$p_PathNet[idx], tolerance=0.00001)
checkEquals(1, results$p_PathNet_FWER[idx])
idx <- 36
checkEquals('Vascular smooth muscle contraction', as.character(results$Name[idx]))
checkEquals(13, results$No_of_Genes[idx])
checkEquals(3, results$Sig_Direct[idx])
checkEquals(3, results$Sig_Combi[idx])
checkEquals(0.7900371, results$p_Hyper[idx], tolerance=0.00001)
checkEquals(1, results$p_Hyper_FWER[idx])
checkEquals(0.7341656, results$p_PathNet[idx], tolerance=0.00001)
checkEquals(1, results$p_PathNet_FWER[idx])
# Combined and Indirect Evidence
er <- z$enrichment_combined_evidence
idx <- 23
checkEquals(31, er[idx,1])
checkEquals(0.0881113798, er[idx,2], tolerance=0.00001)
checkTrue(is.na(er[idx,3]))
checkEquals(0.088111380, er[idx,4], tolerance=0.00001)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.