Nothing
## ---- include=FALSE-----------------------------------------------------------
knitr::opts_chunk$set(
collapse=TRUE,
comment="#>"
)
## ----setup--------------------------------------------------------------------
# install.packages("devtools")
# devtools::install_github("https://github.com/saeyslab/PeacoQC")
library(PeacoQC)
## ---- warning=FALSE, fig.show='hide'------------------------------------------
# Specify flowframe path and read your flowframe
fileName <- system.file("extdata", "111.fcs", package="PeacoQC")
ff <- flowCore::read.FCS(fileName)
# Determine channels on which quality control should be done
channels <- c(1, 3, 5:14, 18, 21)
# Remove margins
# Make sure you do this before any compensation since the internal parameters
# change and they are neccessary for the RemoveMargins function.
# If this is not possible, you can specify the internal parameters in the
# channel_specifications parameter.
ff <- RemoveMargins(ff=ff, channels=channels, output="frame")
# Compensate and transform the data
ff <- flowCore::compensate(ff, flowCore::keyword(ff)$SPILL)
ff <- flowCore::transform(ff,
flowCore::estimateLogicle(ff, colnames(flowCore::keyword(ff)$SPILL)))
# Run PeacoQC and save the cleaned flowframe as an fcs file and plot the results
# of this quality control step.
peacoqc_res <- PeacoQC(
ff=ff,
channels=channels,
determine_good_cells="all",
save_fcs=TRUE,
plot=TRUE,
output_directory = "PeacoQC_Example1")
# Filtered flowframe is stored in peacoqc_res$FinalFF and can be used for
# further analysis.
ff <- peacoqc_res$FinalFF
## ---- eval = FALSE------------------------------------------------------------
# # # Example of how the code could look for mass cytometry data
#
# ff <- read.FCS(file)
#
# # You don't have to remove margin events or compensate the data but you
# # should transform it
# channels <- c(3, 5, 6:53)
#
# ff <- transform(ff,transformList(colnames(ff)[channels],
# arcsinhTransform(a = 0, b = 1/5, c = 0)))
#
# # Make sure the parameters are set correctly and that the remove_zeros variable
# # is set to TRUE.
# peacoqc_results <- PeacoQC(ff,
# channels=channels,
# IT_limit=0.6,
# remove_zeros=TRUE,
# time_units=50000)
#
## ---- warning=FALSE-----------------------------------------------------------
# Change IT_limit for one compensated and transformed file.
# (Higher=more strict, lower=less strict)
# The fcs file should not be saved since we are still optimising the parameters
fileName <- system.file("extdata", "111.fcs", package="PeacoQC")
ff <- flowCore::read.FCS(fileName)
# Determine channels on which quality control should be done
channels <- c(1, 3, 5:14, 18, 21)
# Remove margins
ff <- RemoveMargins(ff=ff, channels=channels, output="frame")
# Compensate and transform the data
ff <- flowCore::compensate(ff, flowCore::keyword(ff)$SPILL)
ff <- flowCore::transform(ff,
flowCore::estimateLogicle(ff, colnames(flowCore::keyword(ff)$SPILL)))
# Run PeacoQC and save the cleaned flowframe as an fcs file and plot the results
# of this quality control step.
peacoqc_res <- PeacoQC(
ff=ff,
channels=channels,
determine_good_cells="all",
save_fcs=FALSE,
plot=TRUE,
output_directory = "PeacoQC_Example2",
IT_limit = 0.65)
## ---- eval = FALSE------------------------------------------------------------
#
# # You can also change the MAD parameter to a lower value
# # (to make it more strict) or to a higher value (to make it less strict).
# # Since the MAD analysis does not remove something, this is not neccesary now.
#
# peacoqc_res <- PeacoQC(
# ff,
# channels,
# determine_good_cells="all",
# save_fcs=FALSE,
# plot=TRUE,
# MAD=8
# )
#
#
# # When the correct parameters are chosen you can run the different files in
# # a for loop
#
# for (file in files){
# ff <- flowCore::read.FCS(file)
#
# # Remove margins
# ff <- RemoveMargins(ff=ff, channels=channels, output="frame")
#
# # Compensate and transform the data
# ff <- flowCore::compensate(ff, flowCore::keyword(ff)$SPILL)
# ff <- flowCore::transform(ff,
# flowCore::estimateLogicle(ff,
# colnames(flowCore::keyword(ff)$SPILL)))
# peacoqc_res <- PeacoQC(
# ff,
# channels,
# determine_good_cells="all",
# IT_limit=0.6,
# save_fcs=T,
# plot=T)
# }
#
## -----------------------------------------------------------------------------
# Find the path to the report that was created by using the PeacoQC function
location <- system.file("extdata", "PeacoQC_report.txt", package="PeacoQC")
# Make heatmap overview of the quality control run
PeacoQCHeatmap(report_location=location)
# Make heatmap with only the runs of the last test
PeacoQCHeatmap(report_location=location, latest_tests=TRUE)
# Make heatmap with row annotation
PeacoQCHeatmap(report_location=location,
row_split=c("r1", "r2", rep("r3", 2), rep("r4", 16)))
## ---- warning=FALSE, fig.show= 'hide'-----------------------------------------
# Load in compensated and transformed flowframe
fileName <- system.file("extdata", "111_Comp_Trans.fcs", package="PeacoQC")
ff <- flowCore::read.FCS(fileName)
# Plot only the peaks (No quality control)
PlotPeacoQC(ff, channels, display_peaks=TRUE, prefix = "PeacoQC_peaks_")
# Plot only the dots of the file
PlotPeacoQC(ff, channels, display_peaks=FALSE, prefix = "PeacoQC_nopeaks_")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.