Description Usage Arguments Value Examples
View source: R/TwoPart_MultiMS.R
Function plots fold changes and p-values as a volcano plot. Two lines are plotted for the p-value cutoff at p = PV_cutoff (solid line) and p = 0.1 (dashed line).
| 1 | plot_volcano(FC, PV, FC_cutoff = 2, PV_cutoff = 0.05, figtitle = "")
 | 
| FC | vector of fold changes | 
| PV | vctor of p-values, same lenght as FC | 
| FC_cutoff | fold change cutoff where to draw vertical cutoff lines, default = 2 | 
| PV_cutoff | p-value cutoff where to draw a horisontal cutoff line, default ==.05 | 
| figtitle | title to display at the top of the figure, default = ” | 
Nil
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | data(mm_peptides)
head(mm_peptides)
intsCols = 8:13 # different from parameter names as
                # R uses outer name spaces if variable is undefined
metaCols = 1:7
m_logInts = make_intencities(mm_peptides, intsCols)
m_prot.info = make_meta(mm_peptides, metaCols)
m_logInts = convert_log2(m_logInts)
# Normalize data
grps = as.factor(c('CG','CG','CG', 'mCG','mCG','mCG'))
set.seed(123) 
mm_m_ints_eig1 = eig_norm1(m=m_logInts,treatment=grps,prot.info=m_prot.info)
mm_m_ints_eig1$h.c # check the number of bias trends detected
# Impute missing values
mm_m_ints_norm = eig_norm2(rv=mm_m_ints_eig1)
mm_prot.info = mm_m_ints_norm$normalized[,1:7]
mm_norm_m =  mm_m_ints_norm$normalized[,8:13]
set.seed(125) # needed for reproducibility of imputation
imp_mm = MBimpute(mm_norm_m, grps, prot.info=mm_prot.info,
                  pr_ppos=2, my.pi=0.05, compute_pi=FALSE)
DE_res = peptideLevel_DE(imp_mm$y_imputed, grps, imp_mm$imp_prot.info,
                         pr_ppos=2)
plot_volcano(DE_res$FC, DE_res$BH_P_val, FC_cutoff=1.5,
             PV_cutoff=.05, figtitle='Mouse DE')
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.