Description Usage Arguments Value Examples
Uses R's optimize
function to find the maximum likelihood
estimate of dispersion for a beta binomial distribution
(theta
for the dbetabinom
function in the
emdbook package). The counts, size, and beta are matrices,
such that each row could be treated as a beta-binomial GLM
problem.
1 |
success |
the observed successes (a matrix) |
size |
the total trials (a matrix) |
weights |
the weights (1 or a matrix) |
x |
the design matrix, as many rows as columns of |
beta |
a matrix of MLE coefficients, as many rows as |
minDisp |
the minimum dispersion value |
maxDisp |
the maximum dispersion value |
se |
logical, whether to return standard error estimate on the log of the dispersion (theta). Warning: the standard error estimates are not reliable at the boundary (log of minDisp and maxDisp), and should be interpreted with caution! |
a vector of estimated dispersions (theta). if se=TRUE
a matrix
with columns: the vector of estimated dispersions and the standard
errors for the log of the estimated dispersions
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | library(emdbook)
n <- 100
m <- 100
size <- matrix(rnbinom(n*m, mu=100, size=10),ncol=m)
success <- matrix(rbetabinom(n*m, prob=.5, size=size, theta=100),ncol=m)
x <- matrix(rep(1,m),ncol=1)
beta <- matrix(rep(0,n),ncol=1)
theta <- bbEstDisp(success=success, size=size, x=x, beta=beta, minDisp=1, maxDisp=500)
summary(theta)
# with standard error estimates on log of dispersion
fit <- bbEstDisp(success=success, size=size, x=x, beta=beta, minDisp=1, maxDisp=500, se=TRUE)
plot(fit[1:20,"theta"], ylim=c(0,500), ylab="theta-hat")
log.theta <- log(fit[1:20,"theta"])
log.theta.se <- fit[1:20,"se"]
segments(1:20, exp(log.theta - 2 * log.theta.se),
1:20, exp(log.theta + 2 * log.theta.se))
abline(h=100,col="red")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.