Description Usage Arguments Value Examples
Heatmap of contributions of a select subset of biomarkers to the variable importance measure changes as assessed by influence curve-based estimation, across all subjects. The heatmap produced performs supervised clustering, as per Pollard & van der Laan (2008) <doi:10.2202/1544-6115.1404>.
1 | heatmap_ic(x, ..., design, FDRcutoff = 0.25, type = c("top", "all"), top = 25)
|
x |
Object of class |
... |
additional arguments passed to |
design |
A vector giving the contrast to be displayed in the heatmap. |
FDRcutoff |
Cutoff to be used in controlling the False Discovery Rate. |
type |
A |
top |
Number of identified biomarkers to plot in the heatmap. |
heatmap (from superheat) using hierarchical clustering to plot the changes in the variable importance measure for all subjects across a specified top number of biomarkers.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | ## Not run:
library(dplyr)
library(biotmleData)
library(SummarizedExperiment)
data(illuminaData)
colData(illuminaData) <- colData(illuminaData) %>%
data.frame() %>%
dplyr::mutate(age = as.numeric(age > median(age))) %>%
DataFrame()
benz_idx <- which(names(colData(illuminaData)) %in% "benzene")
biomarkerTMLEout <- biomarkertmle(
se = illuminaData,
varInt = benz_idx,
parallel = FALSE,
g_lib = c("SL.mean", "SL.glm"),
Q_lib = c("SL.bayesglm", "SL.glm")
)
limmaTMLEout <- modtest_ic(biotmle = biomarkerTMLEout)
heatmap_ic(x = limmaTMLEout, design = design, FDRcutoff = 0.05, top = 15)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.