knitr::opts_chunk$set(echo = TRUE) knitr::opts_knit$set(root.dir = file.path("..", "extdata"))
cytomapper
packageRunning the 1_LoadPancreasData.Rmd
script generates a SingleCellExperiment
object:
pancreas_sce.rds
: contains the single cell data. Runing the 2_LoadPancreasImages.Rmd
generates two CytoImageList
objects:
pancreas_images.rds
: contains the multiplexed images.pancreas_masks.rds
: contains the cell masks.These three object form a dataset comprising 100 multiplexed images that each contain 38 channels and the associated single-cell data.
For space reasons, this dataset needs to be subsetted in order to generate the
small toy dataset used to illustrate the cytomapper
package.
In this script, we will crop the images to 100 x 100 pixels and limit the number of channels to five. We will subset the single-cell dataset accordingly, to retain only the cells and channels that are present on the toy images.
library(SingleCellExperiment) library(cytomapper) library(ijtiff)
pancreasSCE <- readRDS("pancreas_sce.rds") pancreasSCE
pancreasImages <- readRDS("pancreas_images.rds") pancreasImages
pancreasMasks <- readRDS("pancreas_masks.rds") pancreasMasks
We first rename the images and the masks to have shorter names.
We next select three images to subset by providing three image names that are
in names(images)
and use the cytomapper::getImages
function to subset them.
# Rename the images names(pancreasImages) <- gsub('a0_full_clean', 'imc', names(pancreasImages)) names(pancreasMasks) <- gsub('a0_full_mask', 'mask', names(pancreasMasks)) # Name of the images to subset image.list <- c("E34", "G01", "J02") # Subset the three selected images pancreasImages <- getImages(pancreasImages, paste(image.list, 'imc', sep='_')) pancreasMasks <- getImages(pancreasMasks, paste(image.list, 'mask', sep='_'))
We will subset five channels from the subsetted images.
We provide five channel names (that are in channelNames(pancreasImages)
) and use the
cytomapper::getChannels
function to subset them.
# Name of the channel to subset channel.list <- c("H3", "CD99", "PIN", "CD8a", "CDH") # Subset the five selected channels pancreasImages <- getChannels(pancreasImages, channel.list)
For each image, we provide specific coordinates.
The same coordinates are used for the images and the masks.
pancreasImages$E34_imc <- CytoImageList(pancreasImages$E34_imc[95:194, 201:300,]) pancreasImages$G01_imc <- CytoImageList(pancreasImages$G01_imc[121:220, 291:390,]) pancreasImages$J02_imc <- CytoImageList(pancreasImages$J02_imc[246:345, 501:600,]) pancreasMasks$E34_mask <- CytoImageList(pancreasMasks$E34_mask[95:194, 201:300]) pancreasMasks$G01_mask <- CytoImageList(pancreasMasks$G01_mask[121:220, 291:390]) pancreasMasks$J02_mask <- CytoImageList(pancreasMasks$J02_mask[246:345, 501:600])
mcols(pancreasImages)$ImageNb <- c(1:3) mcols(pancreasMasks)$ImageNb <- c(1:3)
We first subset the selected images from the SingleCellExperiment
object.
We then subset the selected channels
# Subset the selected images pancreasSCE <- pancreasSCE[, pancreasSCE$ImageName %in% image.list] # Subset the selected channels pancreasSCE <- pancreasSCE[rownames(pancreasSCE) %in% channel.list, ]
We first extract the numbers of the cells present on the cropped masks. We then subset these cells from the SCE object.
# Subset the selected channels E34.cells <- unique(as.vector(pancreasMasks$E34)) G01.cells <- unique(as.vector(pancreasMasks$G01)) J02.cells <- unique(as.vector(pancreasMasks$J02)) # Subset the cells from the SCE pancreasSCE <- cbind(pancreasSCE[,pancreasSCE$ImageName == "E34" & pancreasSCE$CellNumber %in% E34.cells], pancreasSCE[,pancreasSCE$ImageName == "G01" & pancreasSCE$CellNumber %in% G01.cells], pancreasSCE[,pancreasSCE$ImageName == "J02" & pancreasSCE$CellNumber %in% J02.cells])
To save additional space, we will remove the unnecessary metadata from the SCE object.
# Metadata to retain from colData(pancreasSCE) and rowData(pancreasSCE) keep.cols <- c("CellNumber", "Pos_X", "Pos_Y", "Area", "ImageName", "CellType", "CellCat") keep.rows <- c("MetalTag", "Target", "clean_Target") # Subset the SCE object rowData(pancreasSCE) <- rowData(pancreasSCE)[, colnames(rowData(pancreasSCE)) %in% keep.rows] colData(pancreasSCE) <- colData(pancreasSCE)[, colnames(colData(pancreasSCE)) %in% keep.cols]
For convenience, we will add image numbers (ImageNb
) and a channel
numbers (frame
) to the SCE object.
We will also add some columns containing the names of the associated
images and masks and add a column capturing three cell types.
We will also generate a logical entry for testing purposes.
# Add channel numbers rowData(pancreasSCE)$frame <- c(1:5) # Add image numbers image.numbers <- data.frame(ImageName = image.list, ImageNb = c(1:3), stringsAsFactors = FALSE) colData(pancreasSCE) <- transform(merge(colData(pancreasSCE), image.numbers, by="ImageName", all=TRUE), rownames=rownames(colData(pancreasSCE))) rownames(colData(pancreasSCE)) <- colData(pancreasSCE)$rownames colData(pancreasSCE)$rownames <- NULL # Rename the cell number column colData(pancreasSCE)$CellNb <- colData(pancreasSCE)$CellNumber colData(pancreasSCE)$CellNumber <- NULL # Add image and mask names colData(pancreasSCE)$MaskName <- paste(colData(pancreasSCE)$ImageName, 'mask.tiff', sep='_') colData(pancreasSCE)$ImageName <- paste(colData(pancreasSCE)$ImageName, 'imc.tiff', sep='_') # Add cell types cur_celltypes <- pancreasSCE$CellType cur_celltypes[cur_celltypes == "beta"] <- "celltype_A" cur_celltypes[cur_celltypes == "alpha"] <- "celltype_B" cur_celltypes[!(cur_celltypes %in% c("celltype_A", "celltype_B"))] <- "celltype_C" pancreasSCE$CellType <- cur_celltypes # Save logical entry pancreasSCE$Pattern <- pancreasSCE$CellCat == "exocrine" pancreasSCE$CellCat <- NULL
We now save the images and masks as tiff files. These files are used to
illustrate the cytomapper
package.
The EBImage and tiff packages do not support 32-bit encodings for images.
However, after compensation, the pixels contain floats rather than integers.
We have to use the ijtiff package to write out the images.
Of Note: The file names need to be changed to '.tiff' after saving since
the ijtiff package saves every image as '.tif'.
# Save multiplexed images write_tif(imageData(transpose(pancreasImages$E34)), path = "E34_imc.tiff", bits_per_sample = 32L, overwrite = TRUE) file.rename("E34_imc.tif", "E34_imc.tiff") write_tif(imageData(transpose(pancreasImages$G01)), path = "G01_imc.tiff", bits_per_sample = 32L, overwrite = TRUE) file.rename("G01_imc.tif", "G01_imc.tiff") write_tif(imageData(transpose(pancreasImages$J02)), path = "J02_imc.tiff", bits_per_sample = 32L, overwrite = TRUE) file.rename("J02_imc.tif", "J02_imc.tiff") # Save masks write_tif(imageData(transpose(pancreasMasks$E34)), path = "E34_mask.tiff", bits_per_sample = 16L, overwrite = TRUE) file.rename("E34_mask.tif", "E34_mask.tiff") write_tif(imageData(transpose(pancreasMasks$G01)), path = "G01_mask.tiff", bits_per_sample = 16L, overwrite = TRUE) file.rename("G01_mask.tif", "G01_mask.tiff") write_tif(imageData(transpose(pancreasMasks$J02)), path = "J02_mask.tiff", bits_per_sample = 16L, overwrite = TRUE) file.rename("J02_mask.tif", "J02_mask.tiff")
CytoImageList
objects.save(pancreasSCE, file = file.path("..", "..", "data", "pancreasSCE.RData"), compress = "xz") save(pancreasMasks, file = file.path("..", "..", "data", "pancreasMasks.RData"), compress = "xz") save(pancreasImages, file = file.path("..", "..", "data", "pancreasImages.RData"), compress = "xz")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.