Description Value Image scaling Image normalization Author(s) See Also Examples
Methods to change pixel values in CytoImageList objects. In the
following sections, object
is a CytoImageList object
containing one or multiple channels.
A CytoImageList object containing the manipulated Images.
In some cases, images need to be scaled by a constant
(e.g. 2^16-1 = 65535) value
to revert them back to the original
pixel values after reading them in.
scaleImages(object, value)
Scales all images in the
CytoImageList object
by value
.
Linear scaling of the intensity values of each Image contained
in a CytoImageList object
to a specific range. Images
can either be scaled to the minimum/maximum value per channel or across all
channels (default separateChannels = TRUE
). Also, images can be scaled
to the minimum/maximum value per image or across all images (default
separateImages = FALSE
). The latter allows the visual comparison of
intensity values across images.
To clip the images before normalization, the inputRange
can be set.
The inputRange
either takes NULL (default), a vector of length 2
specifying the clipping range for all channels or a list where each
named entry contains a channel-specific clipping range.
normalize(object, separateChannels = TRUE, separateImages = FALSE,
ft = c(0, 1), inputRange = NULL)
:
object
:A CytoImageList object
separateChannels
:Logical if pixel values should be normalized per channel (default) or across all channels.
separateImages
:Logical if pixel values should be normalized per image or across all images (default).
ft
:Numeric vector of 2 values, target minimum and maximum
intensity values after normalization (see normalize
).
inputRange
:Numeric vector of 2 values, sets the absolute
clipping range of the input intensity values (see
normalize
). Alternatively a names list where each
entry corresponds to a channel-specific clipping range.
Nils Eling (nils.eling@dqbm.uzh.ch)
normalize
for details on Image normalization
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | data(pancreasImages)
# Scale images to create segmentation masks
cur_files <- list.files(system.file("extdata", package = "cytomapper"),
pattern = "mask.tiff", full.names = TRUE)
x <- loadImages(cur_files)
# Error when running plotCells(x)
# Therefore scale to account for 16 bit encoding
x <- scaleImages(x, 2^16 - 1)
plotCells(x)
# Default normalization
x <- normalize(pancreasImages)
plotPixels(x, colour_by = c("H3", "CD99"))
# Setting the clipping range
x <- normalize(x, inputRange = c(0, 0.9))
plotPixels(x, colour_by = c("H3", "CD99"))
# Setting the clipping range per channel
x <- normalize(pancreasImages,
inputRange = list(H3 = c(0, 70), CD99 = c(0, 100)))
plotPixels(x, colour_by = c("H3", "CD99"))
# Normalizing per image
x <- normalize(pancreasImages, separateImages = TRUE)
plotPixels(x, colour_by = c("H3", "CD99"))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.