Nothing
## ----loadPS-------------------------------------------------------------------
library(phyloseq); packageVersion("phyloseq")
library(ggplot2); packageVersion("ggplot2")
library(decontam); packageVersion("decontam")
ps <- readRDS(system.file("extdata", "MUClite.rds", package="decontam"))
ps
## ----see-meta-table-----------------------------------------------------------
head(sample_data(ps))
## ----see-depths---------------------------------------------------------------
df <- as.data.frame(sample_data(ps)) # Put sample_data into a ggplot-friendly data.frame
df$LibrarySize <- sample_sums(ps)
df <- df[order(df$LibrarySize),]
df$Index <- seq(nrow(df))
ggplot(data=df, aes(x=Index, y=LibrarySize, color=Sample_or_Control)) + geom_point()
## ----frequency----------------------------------------------------------------
contamdf.freq <- isContaminant(ps, method="frequency", conc="quant_reading")
head(contamdf.freq)
## ----table--------------------------------------------------------------------
table(contamdf.freq$contaminant)
head(which(contamdf.freq$contaminant))
## ----plot-abundance, warning=FALSE--------------------------------------------
plot_frequency(ps, taxa_names(ps)[c(1,3)], conc="quant_reading") +
xlab("DNA Concentration (PicoGreen fluorescent intensity)")
## ----see-contams, warning=FALSE-----------------------------------------------
set.seed(100)
plot_frequency(ps, taxa_names(ps)[sample(which(contamdf.freq$contaminant),3)], conc="quant_reading") +
xlab("DNA Concentration (PicoGreen fluorescent intensity)")
## ----remove-------------------------------------------------------------------
ps
ps.noncontam <- prune_taxa(!contamdf.freq$contaminant, ps)
ps.noncontam
## ----prevalence---------------------------------------------------------------
sample_data(ps)$is.neg <- sample_data(ps)$Sample_or_Control == "Control Sample"
contamdf.prev <- isContaminant(ps, method="prevalence", neg="is.neg")
table(contamdf.prev$contaminant)
head(which(contamdf.prev$contaminant))
## ----prevalence-05------------------------------------------------------------
contamdf.prev05 <- isContaminant(ps, method="prevalence", neg="is.neg", threshold=0.5)
table(contamdf.prev05$contaminant)
## ----see-prev-05--------------------------------------------------------------
# Make phyloseq object of presence-absence in negative controls and true samples
ps.pa <- transform_sample_counts(ps, function(abund) 1*(abund>0))
ps.pa.neg <- prune_samples(sample_data(ps.pa)$Sample_or_Control == "Control Sample", ps.pa)
ps.pa.pos <- prune_samples(sample_data(ps.pa)$Sample_or_Control == "True Sample", ps.pa)
# Make data.frame of prevalence in positive and negative samples
df.pa <- data.frame(pa.pos=taxa_sums(ps.pa.pos), pa.neg=taxa_sums(ps.pa.neg),
contaminant=contamdf.prev$contaminant)
ggplot(data=df.pa, aes(x=pa.neg, y=pa.pos, color=contaminant)) + geom_point() +
xlab("Prevalence (Negative Controls)") + ylab("Prevalence (True Samples)")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.