Description Usage Arguments Value References Examples
Density-preserving t-SNE
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | densne(
  X,
  dims = 2,
  perplexity = 50,
  theta = 0.5,
  verbose = getOption("verbose", FALSE),
  max_iter = 1000,
  Y_init = NULL,
  stop_lying_iter = if (is.null(Y_init)) 250L else 0L,
  mom_switch_iter = if (is.null(Y_init)) 250L else 0L,
  momentum = 0.5,
  final_momentum = 0.8,
  eta = 200,
  exaggeration_factor = 12,
  dens_frac = 0.3,
  dens_lambda = 0.1,
  num_threads = 1
)
 | 
| X | Input data matrix. | 
| dims | Integer output dimensionality. | 
| perplexity | Perplexity parameter (should not be bigger than 3 * perplexity < nrow(X) - 1). | 
| theta | Speed/accuracy trade-off (increase for less accuracy), set to 0.0 for exact TSNE | 
| verbose | Logical; Whether progress updates should be printed | 
| max_iter | integer; Number of iterations | 
| Y_init | matrix; Initial locations of the objects. If NULL, random initialization will be used | 
| stop_lying_iter | integer; Iteration after which the perplexities are no longer exaggerated | 
| mom_switch_iter | integer; Iteration after which the final momentum is used | 
| momentum | numeric; Momentum used in the first part of the optimization | 
| final_momentum | numeric; Momentum used in the final part of the optimization | 
| eta | numeric; Learning rate | 
| exaggeration_factor | numeric; Exaggeration factor used to multiply the affinities matrix P in the first part of the optimization | 
| dens_frac | numeric; fraction of the iterations for which the full
objective function (including the density-preserving term) is used.
For the first  | 
| dens_lambda | numeric; the relative importanceof the density-preservation term compared to the original t-SNE objective function. | 
| num_threads | Number of threads to be used for parallelisation. | 
A numeric matrix corresponding to the t-SNE embedding
Density-Preserving Data Visualization Unveils Dynamic Patterns of Single-Cell Transcriptomic Variability Ashwin Narayan, Bonnie Berger, Hyunghoon Cho; bioRxiv (2020) doi:10.1101/2020.05.12.077776
| 1 2 3 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.