library(BiocStyle) BiocStyle::markdown()
This documents describes two use cases for the coordinate system mapping
functionality of ensembldb
: mapping of regions within protein sequences to the
genome and mapping of genomic to protein sequence-relative coordinates. In
addition, it showcases the advanced filtering capabilities implemented in
ensembldb
.
Down syndrome is a genetic disorder characterized by the presence of all or parts of a third copy of chromosome 21. It is associated, among other, with characteristic facial features and mild to moderate intellectual disability. The phenotypes are most likely the result from a gene dosage-dependent increased expression of the genes encoded on chromosome 21 [@LanaElola:2011fl]. Compared to other gene classes, transcription factors are more likely to have an immediate impact, even due to a moderate over-expression (which might be the result from gene duplication). One of the largest dimerizing transcription factor families is characterized by a basic helix-loop-helix domain [@Massari:2000um], a protein structural motif facilitating DNA binding.
The example below aims at identifying transcription factors with a basic
helix-loop-helix domain (Pfam ID PF00010) that are encoded on chromosome 21. To
this end we first load an R-library providing human annotations from Ensembl
release 86 and pass the loaded EnsDb
object along with a filter expression to
the genes
method that retrieves the corresponding genes. Filter expressions
have to be written in the form ~ <field> <condition> <value>
with <field>
representing the database column to be used for the filter. Several such filter
expressions can be concatenated with standard R logical expressions (such as &
or |
). To get a list of all available filters and their corresponding fields,
the supportedFilters(edb)
function could be used.
library(ensembldb) library(EnsDb.Hsapiens.v86) edb <- EnsDb.Hsapiens.v86 ## Retrieve the genes gns <- genes(edb, filter = ~ protein_domain_id == "PF00010" & seq_name == "21")
The function returned a GRanges
object with the genomic position of the genes
and additional gene-related annotations stored in metadata columns.
gns
Three transcription factors with a helix-loop-helix domain are encoded on
chromosome 21: SIM2, which is a master regulator of neurogenesis and is
thought to contribute to some specific phenotypes of Down syndrome
[@Gardiner:2006uj] and the two genes OLIG1 and OLIG2 for which genetic
triplication was shown to cause developmental brain defects
[@Chakrabarti:2010dt]. To visualize the exonic regions encoding the
helix-loop-helix domain of these genes we next retrieve their transcript models
and the positions of all Pfam protein domains within the amino acid sequences of
encoded by these transcripts. We process SIM2 separately from OLIG1 and
OLIG2 because the latter are encoded in a narrow region on chromosome 21 and
can thus be visualized easily within the same plot. We extract the transcript
models for OLIG1 and OLIG2 that encode the protein domain using the
getGeneRegionTrackForGviz
function which returns the data in a format that can
be directly passed to functions from the Gviz
Bioconductor package
[@Hahne:2016ha] for plotting. Since Gviz
expects UCSC-style chromosome names
instead of the Ensembl chromosome names (e.g. chr21
instead of 21
), we
change the format in which chromosome names are returned by ensembldb
with the
seqlevelsStyle
method. All subsequent queries to the EnsDb
database will
return chromosome names in UCSC format.
## Change chromosome naming style to UCSC seqlevelsStyle(edb) <- "UCSC"
## Subset the EnsDb to speed up vignette processing edb <- filter(edb, filter = ~ seq_name %in% c("chr21", "chr16"))
## Retrieve the transcript models for OLIG1 and OLIG2 that encode the ## the protein domain txs <- getGeneRegionTrackForGviz( edb, filter = ~ genename %in% c("OLIG1", "OLIG2") & protein_domain_id == "PF00010")
Next we fetch the coordinates of all Pfam protein domains encoded by these
transcripts with the proteins
method, asking for columns "prot_dom_start"
,
"prot_dom_end"
and "protein_domain_id"
to be returned by the function. Note
that we restrict the results in addition to protein domains defined in Pfam.
pdoms <- proteins(edb, filter = ~ tx_id %in% txs$transcript & protein_domain_source == "pfam", columns = c("protein_domain_id", "prot_dom_start", "prot_dom_end")) pdoms
We next map these protein-relative positions to the genome. We define first an
IRanges
object with the coordinates and submit this to the proteinToGenome
function for mapping. Besides coordinates, the function requires also the
respective protein identifiers which we supply as names.
pdoms_rng <- IRanges(start = pdoms$prot_dom_start, end = pdoms$prot_dom_end, names = pdoms$protein_id) pdoms_gnm <- proteinToGenome(pdoms_rng, edb)
The result is a list
of GRanges
objects with the genomic coordinates at
which the protein domains are encoded, one for each of the input protein
domains. Additional information such as the protein ID, the encoding transcript
and the exons of the respective transcript in which the domain is encoded are
provided as metadata columns.
pdoms_gnm
Column cds_ok
in the result object indicates whether the length of the CDS of
the encoding transcript matches the length of the protein sequence. For
transcripts with unknown 3' and/or 5' CDS ends these will differ. The mapping
result has to be re-organized before being plotted: Gviz
expects a single
GRanges
object, with specific metadata columns for the grouping of the
individual genomic regions. This is performed in the code block below.
## Convert the list to a GRanges with grouping information pdoms_gnm_grng <- unlist(GRangesList(pdoms_gnm)) pdoms_gnm_grng$id <- rep(pdoms$protein_domain_id, lengths(pdoms_gnm)) pdoms_gnm_grng$grp <- rep(1:nrow(pdoms), lengths(pdoms_gnm)) pdoms_gnm_grng
We next define the individual tracks we want to visualize and plot them with the
plotTracks
function from the Gviz
package.
library(Gviz) ## Define the individual tracks: ## - Ideagram ideo_track <- IdeogramTrack(genome = "hg38", chromosome = "chr21") ## - Genome axis gaxis_track <- GenomeAxisTrack() ## - Transcripts gene_track <- GeneRegionTrack(txs, showId = TRUE, just.group = "right", name = "", geneSymbol = TRUE, size = 0.5) ## - Protein domains pdom_track <- AnnotationTrack(pdoms_gnm_grng, group = pdoms_gnm_grng$grp, id = pdoms_gnm_grng$id, groupAnnotation = "id", just.group = "right", shape = "box", name = "Protein domains", size = 0.5) ## Generate the plot plotTracks(list(ideo_track, gaxis_track, gene_track, pdom_track))
All transcripts are relatively short with the full coding region being in a single exon. Also, both transcripts encode a protein with a single protein domain, the helix-loop-helix domain PF00010.
Next we repeat the analysis for SIM2 by first fetching all of its transcript variants encoding the PF00010 Pfam protein domain from the database. Subsequently we retrieve all Pfam protein domains encoded in these transcripts.
## Fetch all SIM2 transcripts encoding PF00010 txs <- getGeneRegionTrackForGviz(edb, filter = ~ genename == "SIM2" & protein_domain_id == "PF00010") ## Fetch all Pfam protein domains within these transcripts pdoms <- proteins(edb, filter = ~ tx_id %in% txs$transcript & protein_domain_source == "pfam", columns = c("protein_domain_id", "prot_dom_start", "prot_dom_end"))
At last we have to map the protein domain coordinates to the genome and prepare the data for the plot. Since the code is essentially identical to the one for OLIG1 and OLIG2 it is not displayed.
pdoms_rng <- IRanges(start = pdoms$prot_dom_start, end = pdoms$prot_dom_end, names = pdoms$protein_id) pdoms_gnm <- proteinToGenome(pdoms_rng, edb) ## Convert the list to a GRanges with grouping information pdoms_gnm_grng <- unlist(GRangesList(pdoms_gnm)) pdoms_gnm_grng$id <- rep(pdoms$protein_domain_id, lengths(pdoms_gnm)) pdoms_gnm_grng$grp <- rep(1:nrow(pdoms), lengths(pdoms_gnm)) gene_track <- GeneRegionTrack(txs, showId = TRUE, just.group = "right", name = "", geneSymbol = TRUE, size = 0.5) ## - Protein domains pdom_track <- AnnotationTrack(pdoms_gnm_grng, group = pdoms_gnm_grng$grp, id = pdoms_gnm_grng$id, groupAnnotation = "id", just.group = "right", shape = "box", name = "Protein domains", size = 0.5) ## Generate the plot plotTracks(list(ideo_track, gaxis_track, gene_track, pdom_track))
The SIM2 transcript encodes a protein with in total 4 protein domains. The helix-loop-helix domain PF00010 is encoded in its first exon.
One of the known mutations for human red hair color is located at position
16:89920138 (dbSNP ID rs1805009) on the human genome (version GRCh38). Below we
map this genomic coordinate to the respective coordinate within the protein
sequence encoded at that location using the genomeToProtein
function. Note
that we use "chr16"
as the name of the chromosome, since we changed the
chromosome naming style to UCSC in the previous example.
gnm_pos <- GRanges("chr16", IRanges(89920138, width = 1)) prt_pos <- genomeToProtein(gnm_pos, edb) prt_pos
The genomic position could thus be mapped to the amino acid 294 in each of the 3
proteins listed above. Using the select
function we retrieve the official
symbol of the gene for these 3 proteins.
select(edb, keys = ~ protein_id == names(prt_pos[[1]]), columns = "SYMBOL")
Two proteins are from the MC1R gene and one from RP11-566K11.2 (ENSG00000198211) a gene which exons overlap exons from MC1R as well as exons of the more downstream located gene TUBB3. To visualize this we first fetch transcripts overlapping the genomic position of interest and subsequently all additional transcripts within the region defined by the most downstream and upstream exons of the transcripts.
## Get transcripts overlapping the genomic position. txs <- getGeneRegionTrackForGviz(edb, filter = GRangesFilter(gnm_pos)) ## Get all transcripts within the region from the start of the most 5' ## and end of the most 3' exon. all_txs <- getGeneRegionTrackForGviz( edb, filter = GRangesFilter(range(txs), type = "within")) ## Plot the data ## - Ideogram ideo_track <- IdeogramTrack(genome = "hg38", chromosome = "chr16") ## - Genome axis gaxis_track <- GenomeAxisTrack() ## - Transcripts gene_track <- GeneRegionTrack(all_txs, showId = TRUE, just.group = "right", name = "", geneSymbol = TRUE, size = 0.5) ## - highlight the region. hl_track <- HighlightTrack(list(gaxis_track, gene_track), range = gnm_pos) ## Generate the plot plotTracks(list(ideo_track, hl_track))
In the plot above we see 4 transcripts for which one exon overlaps the genomic
position of the variant: two of the gene MC1R, one of RP11-566K11.2 and one
of RP11-566K11.4, a non-coding gene encoded on the reverse strand. Using the
proteins
method we next extract the sequences of the proteins encoded by the 3
transcripts on the forward strand and determine the amino acid at position 294
in these. To retrieve the results in a format most suitable for the
representation of amino acid sequences we specify return.type = "AAStringSet"
in the proteins
call.
## Get the amino acid sequences for the 3 transcripts prt_seq <- proteins(edb, return.type = "AAStringSet", filter = ~ protein_id == names(prt_pos[[1]])) ## Extract the amino acid at position 294 subseq(prt_seq, start = 294, end = 294)
The amino acid at position 294 is for all an aspartic acid ("D") which is in agreement with the reference amino acid of mutation Asp294His [@Valverde:1995if] described by the dbSNP ID of this example.
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.