Description Usage Arguments Details Value Author(s) See Also Examples
Fits a multinomial logistic regression model to a nominal scale outcome.
1 | mlogit(formula, data, control = glm.control())
|
formula |
An object of class |
data |
An optional data frame containing the variables in the model. If not found in 'data', the variables are taken from the environment from which 'mlogit' is called. |
control |
A list of parameters for controlling the fitting process.
See the documentation of |
The function mlogit fits a multinomial logistic regression
model for a multi-valued outcome with nominal scale. The
implementation and behaviour are designed to mimic those of
glm
, but the options are (as yet) more
limited. Missing values are not allowed in the data.
The model is fitted without using a reference outcome category; the parameters are made identifiable by the requirement that the sum of corresponding regression coefficients over the outcome categories is zero.
An object of (S4) class mlogit
. The class has slots:
coefficients (matrix), standard.err (matrix), fitted.values
(matrix), x (matrix), y (matrix), formula (formula), call (call),
df.null (numeric), df.residual (numeric), null.deviance (numeric),
deviance (numeric), iter (numeric), converged (logical).
Methods implemented for the mlogit
class are
coefficients
, fitted.values
, residuals
and
which extract the relevant quantities, and summary
, which
gives the same output as with a glm
object.
Jelle Goeman: j.j.goeman@lumc.nl; Jan Oosting
1 2 3 4 5 |
Loading required package: survival
Call:
mlogit(y ~ x)
Deviance Residuals:
Min 1Q Median 3Q Max
1 -0.9284 -0.8078 -0.6726 -0.0719 1.8595
2 -0.8081 -0.7823 -0.7388 -0.1121 1.7427
3 -0.8081 -0.7823 -0.7388 -0.1121 1.7427
4 -0.9284 -0.8078 -0.6726 -0.0719 1.8595
Coefficients:
Outcome category 1:
Estimate Std.Error z-value Pr(>|z|)
(Intercept) 0.4721 0.7691 0.6139 0.5393
x -0.0465 0.0695 -0.6680 0.5042
Outcome category 2:
Estimate Std.Error z-value Pr(>|z|)
(Intercept) 0.1762 0.7953 0.2216 0.8246
x -0.0153 0.0681 -0.2245 0.8224
Outcome category 3:
Estimate Std.Error z-value Pr(>|z|)
(Intercept) -0.1450 0.8345 -0.1737 0.8621
x 0.0153 0.0681 0.2245 0.8224
Outcome category 4:
Estimate Std.Error z-value Pr(>|z|)
(Intercept) -0.5034 0.8907 -0.5652 0.5720
x 0.0465 0.0695 0.6680 0.5042
Null deviance: 55.452 on 57 degrees of freedom
Residual deviance: 54.689 on 54 degrees of freedom
AIC: 66.689
Number of Fisher Scoring iterations: 4
1 2 3 4
[1,] 0.6370189 -0.2785506 -0.2083033 -0.1501650
[2,] -0.3501301 0.7228076 -0.2137266 -0.1589510
[3,] -0.3373572 -0.2755332 0.7809536 -0.1680632
[4,] -0.3246832 -0.2735745 -0.2242451 0.8225028
[5,] 0.6878715 -0.2713197 -0.2293050 -0.1872467
[6,] -0.2997136 0.7312266 -0.2342090 -0.1973041
[7,] -0.2874582 -0.2659417 0.7610600 -0.2076602
[8,] -0.2753817 -0.2628323 -0.2434816 0.7816956
[9,] 0.7364973 -0.2594543 -0.2478182 -0.2292248
[10,] -0.2518392 0.7441821 -0.2519350 -0.2404079
[11,] -0.2404079 -0.2519350 0.7441821 -0.2518392
[12,] -0.2292248 -0.2478182 -0.2594543 0.7364973
[13,] 0.7816956 -0.2434816 -0.2628323 -0.2753817
[14,] -0.2076602 0.7610600 -0.2659417 -0.2874582
[15,] -0.1973041 -0.2342090 0.7312266 -0.2997136
[16,] -0.1872467 -0.2293050 -0.2713197 0.6878715
[17,] 0.8225028 -0.2242451 -0.2735745 -0.3246832
[18,] -0.1680632 0.7809536 -0.2755332 -0.3373572
[19,] -0.1589510 -0.2137266 0.7228076 -0.3501301
[20,] -0.1501650 -0.2083033 -0.2785506 0.6370189
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.