moduleFEA: Functional GO, KEGG and Reactome enrichment analysis of...

Description Usage Arguments Value Author(s) References Examples

View source: R/miRspongeR.R

Description

Functional GO, KEGG and Reactome enrichment analysis of modules. GO: Gene Ontology database (http://www.geneontology.org/), KEGG: Kyoto Encyclopedia of Genes and Genomes Pathway Database (http://www.genome.jp/kegg/) and Reactome: Reactome Pathway Database (http://reactome.org/).

Usage

1
2
3
moduleFEA(Modulelist, ont = "BP", KEGGorganism = "hsa",
Reactomeorganism = "human", OrgDb = "org.Hs.eg.db",
padjustvaluecutoff = 0.05, padjustedmethod = "BH")

Arguments

Modulelist

A list of miRNA sponge modules.

ont

One of "MF", "BP", and "CC" subontologies.

KEGGorganism

Organism, supported organism listed in http://www.genome.jp/kegg/catalog/org_list.html

Reactomeorganism

Organism, one of "human", "rat", "mouse", "celegans", "yeast", "zebrafish", "fly".

OrgDb

OrgDb

padjustvaluecutoff

A cutoff value of adjusted p-values.

padjustedmethod

Adjusted method of p-values, can select one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none".

Value

A list of functional GO, KEGG and Reactome enrichment analysis results.

Author(s)

Junpeng Zhang (https://www.researchgate.net/profile/Junpeng_Zhang3)

References

1. Yu G, Wang L, Han Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS: A Journal of Integrative Biology, 2012, 16(5):284-287.

2. Yu G and He Q. ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Molecular BioSystems, 2016, 12(12), pp. 477-479.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
## Not run: 
# Obtain expression data file "ExpData.csv" in csv format
ExpDatacsv <- system.file("extdata","ExpData.csv",package="miRspongeR")
ExpData <- read.csv(ExpDatacsv, header=FALSE, sep=",", stringsAsFactors = TRUE)

# Obtain miRNA-target interaction data file "miR2Target.csv" in csv format
miR2Target <- system.file("extdata", "miR2Target.csv", package="miRspongeR")
miRTarget <- read.csv(miR2Target, header=TRUE, sep=",")
pcceRInt <- spongeMethod(miRTarget, ExpData, method = "pc")
spongenetwork_Cluster <- netModule(pcceRInt[, 1:2])
sponge_Module_FEA <- moduleFEA(spongenetwork_Cluster)

## End(Not run)

miRspongeR documentation built on Nov. 19, 2020, 2:01 a.m.