Description Details Author(s) References Examples
The missRows package implements the MI-MFA method to deal with missing individuals ('biological units') in multi-omics data integration. The MI-MFA method generates multiple imputed datasets from a Multiple Factor Analysis model, then the yield results are combined in a single consensus solution. The package provides functions for estimating coordinates of individuals and variables, imputing missing individuals, and various diagnostic plots to inspect the pattern of missingness and visualize the uncertainty due to missing values.
Package: | missRows |
Type: | Package |
Version: | 1.0 |
Date: | 2018-03-19 |
License: | Artistic-2.0 |
Depends: | R (>= 3.4) |
Imports: | methods, gtools, plyr, ggplot2, stats, grDevices, |
S4Vectors, MultiAssayExperiment |
Ignacio González and Valentin Voillet
Maintainer: Ignacio González <ignacio.gonzalez@somewhere.net>
Voillet V., Besse P., Liaubet L., San Cristobal M., González I. (2016). Handling missing rows in multi-omics data integration: Multiple Imputation in Multiple Factor Analysis framework. BMC Bioinformatics, 17(40).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | ## A typical MI-MFA session might look like the following.
## Here we assume there are two data tables with missing rows,
## "table1" and "table2", and the stratum for each individual
## is stored in a data frame "df".
## Not run:
#-- Data preparation
midt <- newMIDTList(table1, table2, colData=df)
#-- Performing MI
midt <- MIMFA(midt, ncomp=2, M=30)
#-- Analysis of the results
plotInd(midt)
plotVar(midt)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.