Description Usage Arguments Value Author(s) References See Also Examples
View source: R/msmsTest-functions.R
Given the set of p-values and log fold changes that result from a test, computes a table of cumulative frequencies of features by p-values in bins of log fold changes.
1 | pval.by.fc(pvals,lfc)
|
lfc |
The log fold changes estimated from the tests. |
pvals |
The p-values, adjusted or not, obtained from the tests. |
A matrix of cumulated frequencies with descriptive row and column names.
Josep Gregori i Font
Josep Gregori, Laura Villareal, Alex Sanchez, Jose Baselga, Josep Villanueva (2013). An Effect Size Filter Improves the Reproducibility in Spectral Counting-based Comparative Proteomics. Journal of Proteomics, DOI http://dx.doi.org/10.1016/j.jprot.2013.05.030
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | library(msmsTests)
data(msms.spk)
# Subset
treat <- pData(msms.spk)
jdx <- which(treat=="U200" | treat=="U600")
e <- msms.spk[,jdx]
pData(e)$treat <- treat[jdx,1,drop=TRUE]
# Pre-process expression matrix
e <- pp.msms.data(e)
# Models and normalizing condition
null.f <- "y~1"
alt.f <- "y~treat"
div <- apply(exprs(e),2,sum)
#Test
res <- msms.glm.pois(e,alt.f,null.f,div=div)
# Post-test filter
lst <- test.results(res,e,pData(e)$treat,"U600","U200",div,
alpha=0.05,minSpC=2,minLFC=1,
method="BH")
## On all features, with multitest adjusted p-values
pval.by.fc(lst$tres$adjp, lst$tres$LogFC)
### On all features deemed significant and biologically relevant
flags <- lst$tres$DEP
pval.by.fc(lst$tres$adjp[flags], lst$tres$LogFC[flags])
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.