globalNullModel: Generate global null model p-value

Description Usage Arguments Details Value Author(s) Examples

View source: R/globalNullModel.R

Description

Randomly select the same number of nodes in the largest connected component of netbox result as a new gene candidate list and repeat multiple times to produce a distribution of node size and edge numbers. This distribution will be used to produce global p-value of netbox result based on the node size or edge numbers of largest component in the final network result.

Usage

1
2
3
4
5
6
7
8
9
globalNullModel(
  netboxGraph,
  networkGraph,
  directed,
  iterations = 30,
  numOfGenes = NULL,
  pValueAdj = "BH",
  pValueCutoff = 0.05
)

Arguments

netboxGraph

igraph network graph object. This igraph object contains NetBox algorithm identified network from geneConnector function

networkGraph

igraph network graph object. This igraph object contains curated network information

directed

boolean value indicating whether the input network is directed or undirected (default = FALSE)

iterations

numeric value for number of iterations

numOfGenes

numeric value for number of genes mapped in the initial network

pValueAdj

string for p-value correction method c("BH", "Bonferroni") as described in the details section (default = "BH")

pValueCutoff

numeric value of p-value cutoff for linker nodes (default = 0.05)

Details

P-value correction methods include the Bonferroni correction ("bonferroni") or Benjamini & Hochberg ("BH").

Value

a list of returned results

Author(s)

Eric Minwei Liu, emliu.research@gmail.com

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
data(netbox2010)

sifNetwork<-netbox2010$network
graphReduced <- networkSimplify(sifNetwork,directed = FALSE) 

geneList<-as.character(netbox2010$geneList)

results<-geneConnector(geneList=geneList,networkGraph=graphReduced,
                      pValueAdj='BH',pValueCutoff=0.05,
                      communityMethod='lec',keepIsolatedNodes=FALSE)

names(results)

# Suggested 100 iterations. 
# Use 5 interations in the exampel to save running time.
# globalTest <- globalNullModel(netboxGraph=results$netboxGraph, 
#                              networkGraph=graphReduced, 
#                              iterations=5, numOfGenes = 274)

netboxr documentation built on Nov. 8, 2020, 5:01 p.m.