Nothing
#' @title Generate global null model p-value
#'
#' @description
#' Randomly select the same number of nodes in the largest connected component
#' of netbox result as a new gene candidate list and repeat multiple times
#' to produce a distribution of node size and edge numbers. This distribution
#' will be used to produce global p-value of netbox result based on the
#' node size or edge numbers of largest component in the final network result.
#'
#' @details
#' P-value correction methods include the Bonferroni correction
#' ("bonferroni") or Benjamini & Hochberg ("BH").
#'
#' @param netboxGraph igraph network graph object. This igraph object contains
#' NetBox algorithm identified network from \code{geneConnector} function
#' @param networkGraph igraph network graph object. This igraph object contains
#' curated network information
#' @param directed boolean value indicating whether the input network is
#' directed or undirected (default = FALSE)
#' @param iterations numeric value for number of iterations
#' @param numOfGenes numeric value for number of genes mapped in the initial
#' network
#' @param pValueAdj string for p-value correction method c("BH", "Bonferroni")
#' as described in the details section (default = "BH")
#' @param pValueCutoff numeric value of p-value cutoff for linker nodes
#' (default = 0.05)
#'
#' @return a list of returned results
#' * globalNull: data frame of global randomization results
#' * globalNodesResult: data frame of global null tested results based on nodes
#' * globalEdgesResult: data frame of global null tested results based on edges
#' @md
#'
#' @author Eric Minwei Liu, \email{emliu.research@gmail.com}
#'
#' @examples
#' data(netbox2010)
#'
#' sifNetwork<-netbox2010$network
#' graphReduced <- networkSimplify(sifNetwork,directed = FALSE)
#'
#' geneList<-as.character(netbox2010$geneList)
#'
#' results<-geneConnector(geneList=geneList,networkGraph=graphReduced,
#' pValueAdj='BH',pValueCutoff=0.05,
#' communityMethod='lec',keepIsolatedNodes=FALSE)
#'
#' names(results)
#'
#' # Suggested 100 iterations.
#' # Use 5 interations in the exampel to save running time.
#' # globalTest <- globalNullModel(netboxGraph=results$netboxGraph,
#' # networkGraph=graphReduced,
#' # iterations=5, numOfGenes = 274)
#' @concept netboxr
#' @export
#' @import igraph
globalNullModel <- function(netboxGraph, networkGraph, directed,
iterations = 30,
numOfGenes = NULL, pValueAdj = "BH",
pValueCutoff = 0.05) {
# calculate component size in the final network result
cl <- clusters(netboxGraph)
if (is.null(numOfGenes)) {
numOfGenes <- length(V(netboxGraph))
}
graphGiantComponent <- induced.subgraph(netboxGraph, which(cl$membership == which.max(cl$csize)))
numOfNodesGiantComponent <- length(V(graphGiantComponent))
numOfEdgesGiantComponent <- length(E(graphGiantComponent))
message(sprintf(
"Largest component in the network contains %s nodes and %s interactions\n", numOfNodesGiantComponent,
numOfEdgesGiantComponent
))
numOfNodes <- NULL
numOfEdges <- NULL
selectedGenes <- NULL
for (iter in seq_len(iterations)) {
message(sprintf("Global null model iteration: %s / %s\n", iter, iterations))
selectedGenes <- sample(V(networkGraph)$name, numOfGenes, replace = FALSE)
resultTmp <- geneConnector(
geneList = selectedGenes, networkGraph = networkGraph, directed = FALSE,
pValueAdj = "BH", pValueCutoff = 0.05, communityMethod = "ebc", keepIsolatedNodes = FALSE
)
cl <- clusters(resultTmp$netboxGraph)
graphGiantComponentTmp <- induced.subgraph(resultTmp$netboxGraph, which(cl$membership == which.max(cl$csize)))
numOfNodes[iter] <- length(V(graphGiantComponentTmp))
numOfEdges[iter] <- length(E(graphGiantComponentTmp))
message(sprintf(
"Largest component in the network contains %s nodes and %s interactions\n\n", numOfNodes[iter],
numOfEdges[iter]
))
}
pValueNodes <- (sum(numOfNodes >= numOfNodesGiantComponent) + 1) / (length(numOfNodes) + 1)
pValueEdges <- (sum(numOfEdges >= numOfEdgesGiantComponent) + 1) / (length(numOfEdges) + 1)
giantComponentRandom <- data.frame(rep(numOfGenes, length(numOfGenes)), numOfNodes, numOfEdges)
colnames(giantComponentRandom) <- c("numOfGenesInput", "numOfNodes", "numOfEdges")
globalNodesResult <- data.frame(
numOfNodesGiantComponent, sum(numOfNodes >= numOfNodesGiantComponent),
iterations, pValueNodes
)
colnames(globalNodesResult) <- c("numOfNodes", "numOfNodesAbove", "iterations", "pValueNodes")
globalEdgesResult <- data.frame(
numOfEdgesGiantComponent, sum(numOfEdges >= numOfEdgesGiantComponent),
iterations, pValueEdges
)
colnames(globalEdgesResult) <- c("numOfEdges", "numOfEdgesAbove", "iterations", "pValueEdges")
result <- list(
globalNull = giantComponentRandom,
globalNodesResult = globalNodesResult,
globalEdgesResult = globalEdgesResult
)
return(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.