screen_shrink: Shrinkage approach for estimating Gaussian graphical model

Description Usage Arguments Value Author(s)

View source: R/diffnet.R

Description

Shrinkage approach for estimating Gaussian graphical model

Usage

1
2
screen_shrink(x, include.mean = NULL, trunc.method = "linear.growth",
  trunc.k = 5)

Arguments

x

The input data. Needs to be a num.samples by dim.samples matrix.

include.mean

Include mean in likelihood. TRUE / FALSE (default).

trunc.method

None / linear.growth (default) / sqrt.growth

trunc.k

truncation constant, number of samples per predictor (default=5)

Value

Returns a list with named elements 'rho.opt', 'wi', 'wi.orig'. Variable rho.opt=NULL (no tuning parameter involved). The variables wi and wi.orig are matrices of size dim.samples by dim.samples containing the truncated and untruncated inverse covariance matrix.

Author(s)

n.stadler


nethet documentation built on Nov. 8, 2020, 6:54 p.m.