nnNorm: Spatial and intensity based normalization of cDNA microarray data based on robust neural nets
Version 2.40.0

This package allows to detect and correct for spatial and intensity biases with two-channel microarray data. The normalization method implemented in this package is based on robust neural networks fitting.

Browse man pages Browse package API and functions Browse package files

AuthorAdi Laurentiu Tarca <atarca@med.wayne.edu>
Bioconductor views Microarray Preprocessing TwoChannel
Date of publicationNone
MaintainerAdi Laurentiu Tarca <atarca@med.wayne.edu>
LicenseLGPL
Version2.40.0
URL http://bioinformaticsprb.med.wayne.edu/tarca/
Package repositoryView on Bioconductor
InstallationInstall the latest version of this package by entering the following in R:
source("https://bioconductor.org/biocLite.R")
biocLite("nnNorm")

Man pages

compNorm: Compares the distribution of several vectors at a time using...
detectSpatialBias: Detecting spatial bias within the print-tips of a two channel...
maNormNN: Intensity and spatial normalization using robust neural...

Functions

compNorm Man page Source code
detectSpatialBias Man page Source code
maNormNN Man page Source code

Files

DESCRIPTION
NAMESPACE
R
R/compNorm.R
R/detectSpatialBias.R
R/maNormNN.R
build
build/vignette.rds
inst
inst/doc
inst/doc/nnNorm.R
inst/doc/nnNorm.Rnw
inst/doc/nnNorm.pdf
inst/otherDoc
inst/otherDoc/nnNormGuide.Rnw
inst/otherDoc/nnNormGuide.bib
man
man/compNorm.Rd
man/detectSpatialBias.Rd
man/maNormNN.Rd
vignettes
vignettes/nnNorm.Rnw
vignettes/nnNorm.bib
vignettes/nnNormGuide.pdf
nnNorm documentation built on May 20, 2017, 10:01 p.m.