Description Usage Arguments Details Value References See Also Examples
Implements the LOND algorithm for asynchronous online testing, as presented by Zrnic et al. (2018).
1 |
d |
Either a vector of p-values, or a dataframe with three columns: an identifier (‘id’), p-value (‘pval’), and either ‘decision.times’, or ‘lags’, depending on which version you're using. See version for more details. |
alpha |
Overall significance level of the procedure, the default is 0.05. |
version |
Takes values 'async', 'dep' or 'batch'. This
specifies the version of LONDstar to use. |
betai |
Optional vector of β_i. A default is provided as proposed by Javanmard and Montanari (2018), equation 31. |
batch.sizes |
A vector of batch sizes, this is required for
|
The function takes as its input either a vector of p-values, or a dataframe with three columns: an identifier (‘id’), p-value (‘pval’), or a column describing the conflict sets for the hypotheses. This takes the form of a vector of decision times or lags. Batch sizes can be specified as a separate argument (see below).
Zrnic et al. (2018) present explicit three versions of LONDstar:
1) version='async'
is for an asynchronous testing
process, consisting of tests that start and finish at (potentially) random
times. The discretised finish times of the test correspond to the decision
times. These decision times are given as the input decision.times
for this version of the LONDstar algorithm.
2) version='dep'
is for online testing under local
dependence of the p-values. More precisely, for any t>0 we allow the
p-value p_t to have arbitrary dependence on the previous L_t
p-values. The fixed sequence L_t is referred to as ‘lags’, and is
given as the input lags
for this version of the LONDstar algorithm.
3) version='batch'
is for controlling the mFDR in
mini-batch testing, where a mini-batch represents a grouping of tests run
asynchronously which result in dependent p-values. Once a mini-batch of tests
is fully completed, a new one can start, testing hypotheses independent of
the previous batch. The batch sizes are given as the input batch.sizes
for this version of the LONDstar algorithm.
Given an overall significance level α, LONDstar requires a sequence of non-negative non-increasing numbers β_i that sum to α.
Note that these LONDstar algorithms control the modified FDR (mFDR).
Further details of the LONDstar algorithms can be found in Zrnic et al. (2018).
d.out |
A dataframe with the original p-values |
Javanmard, A. and Montanari, A. (2018) Online Rules for Control of False Discovery Rate and False Discovery Exceedance. Annals of Statistics, 46(2):526-554.
Zrnic, T., Ramdas, A. and Jordan, M.I. (2018). Asynchronous Online Testing of Multiple Hypotheses. arXiv preprint, https://arxiv.org/abs/1812.05068.
LOND
presents versions of LOND for synchronous p-values,
i.e. where each test can only start when the previous test has finished.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | sample.df <- data.frame(
id = c('A15432', 'B90969', 'C18705', 'B49731', 'E99902',
'C38292', 'A30619', 'D46627', 'E29198', 'A41418',
'D51456', 'C88669', 'E03673', 'A63155', 'B66033'),
pval = c(2.90e-08, 0.06743, 0.01514, 0.08174, 0.00171,
3.60e-05, 0.79149, 0.27201, 0.28295, 7.59e-08,
0.69274, 0.30443, 0.00136, 0.72342, 0.54757),
decision.times = seq_len(15) + 1)
LONDstar(sample.df, version='async')
sample.df2 <- data.frame(
id = c('A15432', 'B90969', 'C18705', 'B49731', 'E99902',
'C38292', 'A30619', 'D46627', 'E29198', 'A41418',
'D51456', 'C88669', 'E03673', 'A63155', 'B66033'),
pval = c(2.90e-08, 0.06743, 0.01514, 0.08174, 0.00171,
3.60e-05, 0.79149, 0.27201, 0.28295, 7.59e-08,
0.69274, 0.30443, 0.00136, 0.72342, 0.54757),
lags = rep(1,15))
LONDstar(sample.df2, version='dep')
sample.df3 <- data.frame(
id = c('A15432', 'B90969', 'C18705', 'B49731', 'E99902',
'C38292', 'A30619', 'D46627', 'E29198', 'A41418',
'D51456', 'C88669', 'E03673', 'A63155', 'B66033'),
pval = c(2.90e-08, 0.06743, 0.01514, 0.08174, 0.00171,
3.60e-05, 0.79149, 0.27201, 0.28295, 7.59e-08,
0.69274, 0.30443, 0.00136, 0.72342, 0.54757))
LONDstar(sample.df3, version='batch', batch.sizes = c(4,6,5))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.