Description Usage Arguments Details Value Author(s) References Examples
View source: R/mv.calout.detect.R
interface to a parametric multivariate outlier detection algorithm
| 1 2 3 | mv.calout.detect(x, k = min(floor((nrow(x) - 1)/2), 100), Ci = C.unstr, 
    lamfun = lams.unstr, alpha = 0.05, method = c("parametric", 
        "rocke", "kosinski.raw", "kosinski.exch")[1], ...) 
 | 
| x | data matrix | 
| k | upper bound on number of outliers; defaults to just less than half the sample size | 
| Ci |  function computing Ci, the covariance determinant ratio
excluding row i.  At present, sole
option is  | 
| lamfun | function computing lambda, the critical values for Ci | 
| alpha | false outlier labeling rate | 
| method | string identifying algorithm to use | 
| ... | reserved for future use | 
bushfire is a dataset distributed by Kosinski to illustrate his method.
a list with components
| inds  | indices of outlying rows | 
| vals  | values of outlying rows | 
| k  | input parameter k | 
| alpha | input parameter alpha | 
VJ Carey
C. Caroni and P. Prescott, Journal of the Royal Statistical Society. Series C (Applied Statistics), Vol. 41, No. 2 (1992), pp. 355-364
| 1 2 3 4 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.