Nothing
##' Simulated data set looking like a helix
##'
##'
##' A matrix containing 1000 observations (rows) and three variables
##' (columns).
##' @title A helix structured toy data set
##' @name helix
##' @aliases helix
##' @usage data(helix)
##' @docType data
##' @references Matthias Scholz, Fatma Kaplan, Charles L. Guy, Joachim
##' Kopka and Joachim Selbig. - Non-linear PCA: a missing data
##' approach. \emph{Bioinformatics 2005 21(20):3887-3895}
##' @keywords datasets
##' @author Henning Redestig
NULL
##' A complete subset from a larger metabolite data set. This is the
##' original, complete data set and can be used to compare estimation
##' results created with the also provided incomplete data (called
##' metaboliteData). The data was created during an in house
##' Arabidopsis coldstress experiment.
##'
##' A matrix containing 154 observations (rows) and 52 metabolites
##' (columns).
##' @name metaboliteDataComplete
##' @docType data
##' @aliases metaboliteDataComplete
##' @title A complete metabolite data set from an Arabidopsis
##' coldstress experiment
##' @keywords datasets
##' @seealso \code{\link{metaboliteData}}
##' @references Matthias Scholz, Fatma Kaplan, Charles L. Guy, Joachim
##' Kopka and Joachim Selbig. - Non-linear PCA: a missing data
##' approach.\emph{Bioinformatics 2005 21(20):3887-3895}
##' @author Wolfram Stacklies
NULL
##' A incomplete subset from a larger metabolite data set. This is the
##' original, complete data set and can be used to compare estimation
##' results created with the also provided incomplete data (called
##' metaboliteData).
##'
##' A matrix containing 154 observations (rows) and 52 metabolites
##' (columns). The data contains 5\% of artificially created uniformly
##' distributed misssing values. The data was created during an in
##' house Arabidopsis coldstress experiment.
##' @name metaboliteData
##' @docType data
##' @aliases metaboliteData
##' @title A incomplete metabolite data set from an Arabidopsis
##' coldstress experiment
##' @keywords datasets
##' @seealso \code{\link{metaboliteDataComplete}}
##' @references Matthias Scholz, Fatma Kaplan, Charles L. Guy, Joachim
##' Kopka and Joachim Selbig. - Non-linear PCA: a missing data
##' approach.\emph{Bioinformatics 2005 21(20):3887-3895}
##' @author Wolfram Stacklies
NULL
##' Principal Component Analysis in R
##'
##' \tabular{ll}{
##' Package: \tab pcaMethods \cr
##' Type: \tab Package \cr
##' Developed since: \tab 2006 \cr
##' License: \tab GPL (>=3) \cr
##' LazyLoad: \tab yes \cr
##' }
##'
##' Provides Bayesian PCA, Probabilistic PCA, Nipals PCA, Inverse
##' Non-Linear PCA and the conventional SVD PCA. A cluster based
##' method for missing value estimation is included for comparison.
##' BPCA, PPCA and NipalsPCA may be used to perform PCA on incomplete
##' data as well as for accurate missing value estimation. A set of
##' methods for printing and plotting the results is also provided.
##' All PCA methods make use of the same data structure (pcaRes) to
##' provide a unique interface to the PCA results. Developed at the
##' Max-Planck Institute for Molecular Plant Physiology, Golm,
##' Germany, RIKEN Plant Science Center Yokohama, Japan, and CAS-MPG
##' Partner Institute for Computational Biology (PICB) Shanghai,
##' P.R. China
##'
##' @name pcaMethods
##' @aliases pcaMethods
##' @docType package
##' @importFrom Rcpp evalCpp
##' @import Biobase
##' @import BiocGenerics
##' @import methods
##' @title pcaMethods
##' @useDynLib pcaMethods
##' @author Wolfram Stacklies, Henning Redestig
NULL
##' \describe{
##' \item{plotR2}{Lack of relevance for this plot and the fact that it
##' can not show cross-validation based diagnostics in the same plot
##' makes it redundant with the introduction of a dedicated
##' \code{plot} function for \code{pcaRes}. The new plot only shows
##' R2cum but the result is pretty much the same.}}
##' @name pcaMethods-deprecated
##' @aliases pcaMethods-deprecated
##' @title Deprecated methods for pcaMethods
##' @author Henning Redestig
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.