Signal drift and batch effect correction for mass spectrometry

knitr::opts_chunk$set(
    collapse = TRUE,
    comment = "#>"
)

Introduction

This vignette demonstrates how to apply Quality Control-Robust Spline Correction (QC-RSC) [@kirwan2013] algorithm for signal drift and batch effect correction within/across a multi-batch direct infusion mass spectrometry (DIMS) and liquid chromatography mass spectrometry (LCMS) datasets.

Please read "Signal drift and batch effect correction and mass spectral quality assessment" vignette to learn how to assess your dataset and details on algorithm itself.

Installation

You should have R version 4.0.0 or above and Rstudio installed to be able to run this notebook.

Execute following commands from the R terminal.

install.packages("gridExtra")

if (!requireNamespace("BiocManager", quietly = TRUE))
    install.packages("BiocManager")
BiocManager::install("pmp")

Load the required libraries into the R environment

library(S4Vectors)
library(SummarizedExperiment)
library(pmp)
library(ggplot2)
library(reshape2)
library(gridExtra)

Dataset

In this tutorial we will be using a direct infusion mass spectrometry (DIMS) dataset consisting of 172 samples measured across 8 batches and is included in pmp package as SummarizedExperiemnt class object MTBLS79. More detailed description of the dataset is available from @kirwan2014, MTBLS79 and R man page.

help ("MTBLS79")
data("MTBLS79")

class <- MTBLS79$Class
batch <- MTBLS79$Batch
sample_order <- c(1:ncol(MTBLS79))

# Input data structure
MTBLS79

class[1:10]
batch[1:10]
sample_order[1:10]

Missing values

Current implementation of QCRSC algorithm does support missing values in the input data object, but we would recommend to filter out features which were net reproducibly measured across quality control (QC) sample. In this example we will use 80% detection threshold.

data <- filter_peaks_by_fraction(df=MTBLS79, classes=class, method="QC",
    qc_label="QC", min_frac=0.8)

Applying signal drift and batch effect correction

Function QCRSC should be used to apply signal batch correction.

Argument df should be SummarizedExperiment object or matrix-like R data structure with all numeric() values.

Argument order should be numeric() vector containing sample injection order during analytical measurement and should be the same length as number of sample in the input object.

Argument batch should be numeric() or character() vector containing values of sample batch identifier. If all samples were measured in 1 batch, then all values in the batch vector should be identical.

Values for classes should be character vector containing sample class labels. Class label for quality control sample has to be QC.

corrected_data <- QCRSC(df=data, order=sample_order, batch=batch, 
    classes=class, spar=0, minQC=4)

Visual comparison of the results

Function 'sbc_plot' provides visual comparison of the data before and after correction. For example we can check output for features '1', '5', and '30' in peak matrix.

plots <- sbc_plot (df=MTBLS79, corrected_df=corrected_data, classes=class, 
    batch=batch, output=NULL, indexes=c(1, 5, 30))
plots

The scores plots of principal components analysis (PCA) before and after correction can be used to asses effects of data correction.

In this example, probabilistic quotient normalisation (PQN) method is used to normalise data, k-nearest neighbours (KNN) for missing value imputation and glog for data scaling. All functions are availiable as a part of r Biocpkg("pmp") package.

See @guida2016 for a more detailed review on common pre-processing steps and methods.

manual_color = c("#386cb0", "#ef3b2c", "#7fc97f", "#fdb462", "#984ea3", 
    "#a6cee3", "#778899", "#fb9a99", "#ffff33")

pca_data <- pqn_normalisation(MTBLS79, classes=class, qc_label="QC")
pca_data <- mv_imputation(pca_data, method="KNN", k=5, rowmax=0.5,
    colmax=0.5, maxp=NULL, check_df=FALSE)
pca_data <- glog_transformation(pca_data, classes=class, qc_label="QC")

pca_corrected_data <- pmp::pqn_normalisation(corrected_data, classes=class,
    qc_label="QC")
pca_corrected_data <- pmp::mv_imputation(pca_corrected_data, method="KNN", k=5,
    rowmax=0.5, colmax=0.5, maxp=NULL, check_df=FALSE)
pca_corrected_data <- pmp::glog_transformation(pca_corrected_data, 
    classes=class, qc_label="QC")

pca_data <- prcomp(t(assay(pca_data)), center=TRUE, scale=FALSE)
pca_corrected_data <- prcomp(t(assay(pca_corrected_data)),
    center=TRUE, scale=FALSE)

# Calculate percentage of explained variance of the first two PC's
exp_var_pca <- round(((pca_data$sdev^2)/sum(pca_data$sdev^2)*100)[1:2],2)
exp_var_pca_corrected <- round(((pca_corrected_data$sdev^2) /
    sum(pca_corrected_data$sdev^2)*100)[1:2],2)

plots <- list()

plotdata <- data.frame(PC1=pca_data$x[, 1], PC2=pca_data$x[, 2], 
    batch=as.factor(batch), class=class)

plots[[1]] <- ggplot(data=plotdata, aes(x=PC1, y=PC2, col=batch)) +
    geom_point(size=2) + theme(panel.background=element_blank()) +
    scale_color_manual(values=manual_color) +
    ggtitle("PCA scores, before correction") +
    xlab(paste0("PC1 (", exp_var_pca[1] ," %)")) +
    ylab(paste0("PC2 (", exp_var_pca[2] ," %)"))

plots[[2]] <- ggplot(data=plotdata, aes(x=PC1, y=PC2, col=class)) +
    geom_point(size=2) + theme(panel.background=element_blank()) +
    scale_color_manual(values=manual_color) +
    ggtitle("PCA scores, before correction") +
    xlab(paste0("PC1 (", exp_var_pca[1] ," %)")) +
    ylab(paste0("PC2 (", exp_var_pca[2] ," %)"))

plotdata_corr <- data.frame(PC1=pca_corrected_data$x[, 1], 
    PC2=pca_corrected_data$x[, 2], batch=as.factor(batch), class=class)

plots[[3]] <- ggplot(data=plotdata_corr, aes(x=PC1, y=PC2, col=batch)) +
    geom_point(size=2) +
    theme(panel.background=element_blank()) +
    scale_color_manual(values=manual_color) +
    ggtitle("PCA scores, after correction") +
    xlab(paste0("PC1 (", exp_var_pca_corrected[1] ," %)")) +
    ylab(paste0("PC2 (", exp_var_pca_corrected[2] ," %)"))

plots[[4]] <- ggplot(data=plotdata_corr, aes(x=PC1, y=PC2, col=class)) +
    geom_point(size=2) +
    theme(panel.background=element_blank()) +
    scale_color_manual(values=manual_color) +
    ggtitle("PCA scores, after correction") +
    xlab(paste0("PC1 (", exp_var_pca_corrected[1] ," %)")) +
    ylab(paste0("PC2 (", exp_var_pca_corrected[2] ," %)"))

grid.arrange(ncol=2, plots[[1]], plots[[2]], plots[[3]], plots[[4]])

Session information

sessionInfo()

References



Try the pmp package in your browser

Any scripts or data that you put into this service are public.

pmp documentation built on April 1, 2021, 6:01 p.m.