bpFitCPCA: Contrastive Principal Component Analysis in Parallel

Description Usage Arguments Value References

View source: R/fitCPCA.R

Description

Given target and background dataframes or matrices, cPCA will perform contrastive principal component analysis (cPCA) of the target data for a given number of eigenvectors and a vector of real valued contrast parameters. This is identical to the implementation of cPCA method by Abid et al. \insertCiteabid2018exploring;textualscPCA. Analogous to fitCPCA, but replaces all lapply calls by bplapply.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
bpFitCPCA(
  target,
  center,
  scale,
  c_contrasts,
  contrasts,
  n_eigen,
  n_medoids,
  eigdecomp_tol,
  eigdecomp_iter
)

Arguments

target

The target (experimental) data set, in a standard format such as a data.frame or matrix.

center

A logical indicating whether the target and background data sets should be centered to mean zero.

scale

A logical indicating whether the target and background data sets should be scaled to unit variance.

c_contrasts

A list of contrastive covariances.

contrasts

A numeric vector of the contrastive parameters used to compute the contrastive covariances.

n_eigen

A numeric indicating the number of eigenvectors to be computed.

n_medoids

A numeric indicating the number of medoids to consider.

eigdecomp_tol

A numeric providing the level of precision used by eigendecompositon calculations. Defaults to 1e-10.

eigdecomp_iter

A numeric indicating the maximum number of interations performed by eigendecompositon calculations. Defaults to 1000.

Value

A list of lists containing the cPCA results for each contrastive parameter deemed to be a medoid.

References

\insertAllCited
scPCA documentation built on Nov. 8, 2020, 6 p.m.